Methods : Biomechanical effects of offset placement of dental implants (2)
Preparation of the superstructure
Using the anatomical crown width as a reference, it was determined that the occlusal surface view of the superstructure would be trapezoidal with a 7-mm buccolingual width in the mesial first premolar section, a 10-mm buccolingual width in the distal first molar section, and a 26-mm mesiodistal width (Fig. 4). The vertical dimension was 8 mm; the upper 4 mm was the thickness of the superstructure and the lower 4 mm was the abutment connection. Three loading points 2 mm in diameter and 0.2 mm in depth were applied to the occlusal surface of the first molar; these formed the buccal loading point (Fig. 4(a)), central loading point (Fig. 4(b)), and lingual loading point (Fig. 4(c)). The superstructure was made of titanium (ISUS, DENTSPLY Sankin, Tokyo, Japan) and fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM). For each type of placement, we prepared three models by mounting the superstructure onto an artificial mandible model in which implants had been embedded; these served as the experimental models.
Application of strain gauges
Four two-wire strain gauges (KFR-02N-120-C1-11, Kyowa Electronic Instruments, Tokyo, Japan) were applied to the no. 36 peri-implant bone surface. The surface of the measurement site was polished with no. 320 sandpaper and then wiped clean with acetone, following which they were adhered with a special adhesive (CC-33A, Kyowa Electronic Instruments, Tokyo, Japan). The strain gauges were applied at four places—the mesial, distal, buccal, and lingual sides of the implant—and the strains they measured were designated as strain M, D, B, and L, respectively (Fig. 5).
Construction of three-dimensional FEA models
The experimental models were fixed in a micro-CT scanner (ScanXmate-L090H, Comscantecno, Kanagawa, Japan) and scanned under the following imaging conditions: tube voltage, 90 kV; tube current, 10 μA; and slice thickness, 106 μm. FEA software (Mechanical Finder®, Research Center of Computational Mechanics, Tokyo, Japan) was used to construct three-dimensional FEA models from the resulting CT data. The mesh was constructed of tetrahedral elements, and the total numbers of nodes and elements were approximately 260,000 and 1,400,000, respectively. FEA models were prepared with appropriate physical properties (Table 1) determined by consulting the values published by the manufacturer of the artificial mandible models and Young’s modulus and Poisson’s ratio used in past research. The implant, abutment, and superstructure were assumed to be a continuous structure made of titanium; no intervening conditions were set between the implant and abutment nor between the abutment and superstructure. The artificial cortical bone, artificial cancellous bone, implant, and superstructure were assumed to be homogeneous, isotropic, and linearly elastic. The boundary conditions for the implant and bone were a state of contact. The coefficient of friction of the interface between the implants and artificial mandibular bones was set to zero. The boundary conditions of the experimental model were reproduced by the contact model of FEA. Immediate loading was assumed in this model, because a state of contact was reproduced between the implant and artificial mandibular bone. The FEA models were made so as to correspond to each of the three experimental models with the respective placements, so nine FEA models were prepared similar to the experimental models.
Displacement measurements
Implant displacement measurements under loading conditions in the experimental model
Implant displacement under loading conditions was measured using an Instron-type universal testing machine (Instron-5500R®, Instron Japan, Kanagawa, Japan) for the experimental model. The experimental models were placed on the worktable of an Instron-type universal testing machine, and compression tests were performed using a conical jig. A vertical load was applied at a rate of 0.5 mm/s on the three loading points. Using a report stating that the maximum occlusal force applied to an implant superstructure in the molar region is 200 N as a reference, we selected 100 N for loading, to simulate the forces generated during mastication. A strain gauge (2630-100, Instron Japan, Kanagawa, Japan) was attached between the worktable and jig, and the change in the distance between the worktable and jig was measured under the assumption that it would be the same as the implant displacements under loading conditions (Fig. 6). Measurements were taken five times at each loading site, and the mean of the five measurements was considered the representative value of the loading site in that model.
Implant displacement measurements under loading conditions in the FEA models
All nodes at the bottom of the artificial mandible were completely restrained, 100 N of vertical load was applied to the three loading points, and an elastic analysis was performed. The vertical displacement of the loading points was assumed to be the displacement of the implants under loading conditions, and analyses were performed for the three loading sites (Fig. 7).
Measurements of the three-dimensional displacement in the FEA models
We analyzed the three-dimensional displacements of the three implants when 100 N of vertical load was applied. The assessment sites were the neck and tip of the implant, and the displacements of the implants under loading were analyzed with respect to the buccolingual direction (x-axis), the mesiodistal direction (y-axis), and the inferior-superior direction (z-axis).
Measurement of strain
Measurement of strain in the experimental models
An Instron-type universal testing machine was used to run a compression test during which strain was measured simultaneously. The strain gauges and a laptop computer (Latitude E5500, Dell, Texas, USA) were connected to a sensor interface (PCD-300B, Kyowa Electronic Instruments, Tokyo, Japan), and the strain in the peri-implant bone during the application of a 100-N load was measured.
Measurement of strain in the FEA models
The places on the experimental models where the strain gauges were applied were represented as coordinate points on the FEA models, and the strain in the FEA models was calculated by dividing the change in length between before and after loading by the length of the strain gauges.
Assessment of the stress distribution in the FEA models
An equivalent stress occurring in the peri-implant bone during loading was observed and assessed in a buccolingual cross-section of the no. 36 implant. The stress distributions were compared between placements.
Statistical analysis
Compressed displacement and strain values were examined by two-way analysis of variance using differences in load site and placement as factors. The level of significance was set to 5 %. Subsequently, Tukey’s method was used to perform a multiple comparison test, and for this also, the level of significance was set to 5 %.
PASW Statistics Ver18 (SPSS, Tokyo, Japan) was used for statistical processing.
Serial posts:
- Biomechanical effects of offset placement of dental implants
- Background : Biomechanical effects of offset placement of dental implants
- Methods : Biomechanical effects of offset placement of dental implants (1)
- Results : Biomechanical effects of offset placement of dental implants (1)
- Methods : Biomechanical effects of offset placement of dental implants (2)
- Methods : Biomechanical effects of offset placement of dental implants (3)
- Methods : Biomechanical effects of offset placement of dental implants (4)
- Results : Biomechanical effects of offset placement of dental implants (2)
- Discussion : Biomechanical effects of offset placement of dental implants (1)
- Discussion : Biomechanical effects of offset placement of dental implants (4)
- Discussion : Biomechanical effects of offset placement of dental implants (2)
- Discussion : Biomechanical effects of offset placement of dental implants (3)
- Discussion : Biomechanical effects of offset placement of dental implants (5)
- References : Biomechanical effects of offset placement of dental implants
- Figure 1. An artificial mandible
- Figure 2. Three implants were embedded in an artificial mandible
- Figure 3. Three different models with different placements
- Figure 4. Experimental model. (a) Buccal load, (b) central load, and (c) lingual load
- Figure 5. Application of strain gauges
- Figure 6. Loading test in the experimental model
- Figure 7. A finite element analysis (FEA) model
- Figure 8. The displacement of the implants under loading in experimental models
- Figure 9. The displacement of the implants under loading in finite element analysis (FEA) models
- Figure 11. The strain around the no. 36 implant in the experimental models
- Figure 12. The strain around the no. 36 implant
- Figure 13. The distribution of equivalent stress around the peri-implant bone
- Figure 14. The distribution of equivalent stress around the no. 36 implant
- Figure 15. Load supporting area in the superstructures
- Table 1 Mechanical properties of materials used in the FEA models
- Table 2 Means and standard deviations (SD) of displacement of the implants
- Table 3 Means and standard deviations (SD) of displacement of the implants
- Table 4 Means and standard deviations (SD) of strain around the no. 36 implant
- Table 5 Tukey’s test for strain B in the experimental models
- Table 6 Tukey’s test for strain L in the experimental models
- Table 7 Means and standard deviations (SD) of strain around the no. 36 implant
- Table 8 Tukey’s test for strain B in the FEA models
- Table 9 Tukey’s test for strain L in the FEA models