Results : Biomechanical effects of offset placement of dental implants (2)
Strain on the peri-implant bone
Strain in the experimental models
Figure 11 and Table 4 show the strain, by loading site, in the implant part corresponding to the first molar in the experimental models during the application of a 100-N vertical load.
Considerable compressive strain was observed with the load-side strain gauges in all placements, and similar trends were observed between placements. As much as about 4500 με of compressive strain was observed. Strain B was significantly higher for the B-offset than for any of the other placements during buccal loading (Table 5). Strain L did not show a significant difference between placements during lingual loading (Table 6).
Strain in the FEA models
Figure 12 and Table 7 show the strain, by loading site, in the implant part corresponding to the first molar in the FEA models during the application of a 100-N vertical load.
Similar to the experimental models, considerable compressive strain was observed on the load side in all placements, and similar trends were noted between placements. As much as about 1700 με of compressive strain was observed. Strain B was significantly greater with straight placement than with offset placement during buccal loading (Table 8). Stain L with lingual loading was significantly higher in the L-offset than in the B-offset (Table 9). There were differences between the experimental and FEA models in the magnitude of strain around the peri-implant bone. However, the trends for the occurrence of strain based on differences in loading site were similar between the two groups.
Stress distributions in the FEA models
Figures 13 and 14 show the stress distributions in the peri-implant bone in the FEA models during the application of a 100-N vertical load. In all placements, considerable stress was concentrated in the load-side peri-implant bone. Stress was found to be concentrated over a broad range in the cancellous bone surrounding the implant body bottom in the B-offset during buccal loading and in the L-offset during lingual loading.
Serial posts:
- Biomechanical effects of offset placement of dental implants
- Background : Biomechanical effects of offset placement of dental implants
- Methods : Biomechanical effects of offset placement of dental implants (1)
- Results : Biomechanical effects of offset placement of dental implants (1)
- Methods : Biomechanical effects of offset placement of dental implants (2)
- Methods : Biomechanical effects of offset placement of dental implants (3)
- Methods : Biomechanical effects of offset placement of dental implants (4)
- Results : Biomechanical effects of offset placement of dental implants (2)
- Discussion : Biomechanical effects of offset placement of dental implants (1)
- Discussion : Biomechanical effects of offset placement of dental implants (4)
- Discussion : Biomechanical effects of offset placement of dental implants (2)
- Discussion : Biomechanical effects of offset placement of dental implants (3)
- Discussion : Biomechanical effects of offset placement of dental implants (5)
- References : Biomechanical effects of offset placement of dental implants
- Figure 1. An artificial mandible
- Figure 2. Three implants were embedded in an artificial mandible
- Figure 3. Three different models with different placements
- Figure 4. Experimental model. (a) Buccal load, (b) central load, and (c) lingual load
- Figure 5. Application of strain gauges
- Figure 6. Loading test in the experimental model
- Figure 7. A finite element analysis (FEA) model
- Figure 8. The displacement of the implants under loading in experimental models
- Figure 9. The displacement of the implants under loading in finite element analysis (FEA) models
- Figure 11. The strain around the no. 36 implant in the experimental models
- Figure 12. The strain around the no. 36 implant
- Figure 13. The distribution of equivalent stress around the peri-implant bone
- Figure 14. The distribution of equivalent stress around the no. 36 implant
- Figure 15. Load supporting area in the superstructures
- Table 1 Mechanical properties of materials used in the FEA models
- Table 2 Means and standard deviations (SD) of displacement of the implants
- Table 3 Means and standard deviations (SD) of displacement of the implants
- Table 4 Means and standard deviations (SD) of strain around the no. 36 implant
- Table 5 Tukey’s test for strain B in the experimental models
- Table 6 Tukey’s test for strain L in the experimental models
- Table 7 Means and standard deviations (SD) of strain around the no. 36 implant
- Table 8 Tukey’s test for strain B in the FEA models
- Table 9 Tukey’s test for strain L in the FEA models