References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
De Moraes SL, Verri FR, Santiago JF Jr, Almeida DA, de Mello CC, Pellizzer EP. A 3-D finite element study of the influence of crown-implant ratio on stress distribution. Braz Dent J. 2013;24(6):635–41.
Moraes SL, Pellizzer EP, Verri FR, Santiago JF Jr, Silva JV. Three-dimensional finite element analysis on stress distribution in retention screws of different crown-implant ratios. Comput Methods Biomech Biomed Engin. 2015;18(7):689–96.
Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res. 2005;16(4):486–94.
Möhlhenrich SC, Heussen N, Elvers D, Steiner T, Hölzle F, Modabber A. Compensating for poor primary implant stability in different bone densities by varying implant geometry: a laboratory study. Int J Oral Maxillofac Surg. 2015;44:1514–20.
Yazicioglu D, Bayram B, Oguz Y, Cinar D, Uckan S. Stress distribution on short implants at maxillary posterior alveolar bone model with different bone-to-implant contact ratio: finite elemnt analysis. J Oral IMplantol. 2016;42(1):26–33.
Sivan-Gildor A, Machtei EE, Gabay E, Frankenthal S, Levin L, Suzuki M, Coelho PG, Zigdon-Giladi H. Novel implant design improves implant survival in multirooted extraction sites: a preclinical pilot study. J Periodontol. 2014;85:1458–63.
Jain N, Gulati NJM, Garg M, Pathak C. Short implants: new horizon in implant dentistry. J Clin Diagn Res. 2016;10(9):ZE14–7.
Quaranta A, D’Isidoro O, Bambini F, Putignano A. Potential bone to implant contact area of short versus standard implants: an in vitro micro-computed tomography analysis. Implant Dent. 2016;25(1):97–102.
Makowiecki A, Botzenhart U, Seeliger J, Heinemann F, Biocev P, Dominiak M. A comparative study of the effectiveness of early and delayed loading of short tissue-level dental implants with hydrophilic surfaces placed in the posterior section of the mandible—a preliminary study. Ann Anat. 2017;212:61–8.
Cohen O, Ormianer Z, Tal H, Rothamel D, Weinreb M, Moses O. Differences in crestal bone-to-implant contact following an under-drilling compared to an over-drilling protocol. A study in the rabbit tibia. Clin Oral Investig. 2016;20(9):2475–80.
Serial posts:
- Abstract : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Introduction : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Introduction : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- Results : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Results : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [4]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [5]
- Conclusion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Abbreviations : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [4]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [5]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [6]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [7]
- Acknowledgements : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Author information : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Author information : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Ethics declarations : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Additional files : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Rights and permissions : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- About this article : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 1 Patient recruitment : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 2 Surgical treatment protocol : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 3 Prosthetic treatment protocol : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 4 Clinical characteristics of the study cohort : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Fig. 1. a Closed short expandable dental implant (4.1 × 7 mm). The implant-abutment connection is characterised by an internal hexagon for rotation stability, combining the advantages of conical and parallel surfaces to reduce microgaps and micromovement [68]. The microthread concept and platform switching concept are implemented in the implant shoulder to reduce periimplant bone strain [53]. b Manual fixation of the expansion tool. Take note of the distance between both yellow rings. c Completion of the expansion process using the ratchet. Take note of the contact between both yellow rings. d Opened short expandable dental implant (4.1 × 7 mm). The expanded implant provides an increased bone-to-implant interface (pyramid shape) in the apical portion [54]. e Cross-section view of the implant apex. The apical expansion process is characterised by the unfolding of four wings, which are connected by four foils. D1: diameter of the closed implant. D2: diameter of the opened implant. fTop v
- Fig. 2. Cumulative implant survival over the follow-up period. The Kaplan-Meyer diagram visualises the analysis of implant survival in the maxilla and in the mandible (log rank test, p = 0.173) over the follow-up period up to 37 months (Table 4) : Novel expandable short dental implant
- Fig. 3. a Primary implant stability. The histogram visualises the distribution of the implant stability quotients (ISQ) for both jaws measured by resonance frequency analysis (Osstell AB, Göteborg, Sweden). b Secondary implant stability. The histogram shows the distribution of the implant stability quotients (ISQ) of osseointegrated implants. According to the measurement implant stability was classified as low with ISQ values < 60, medium with ISQ values 60–70, and high with values ISQ > 70 [34] : Novel expandable short dental implant
- Fig. 4. a–h Prosthetic restauration—follow-up examination. Intraoral and perioral views of a rehabilitated female patient. (She asked explicitly only for implantological treatment in the mandible.) : Novel expandable short dental implant
- Fig. 5. a Postoperative orthopantomogram. b Follow-up orthopantomogram. c Follow-up standard periapical radiogram (implants i42 and i44). d Follow-up standard periapical radiogram (implants i32 and i34) : Novel expandable short dental implant