References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [6]
Gehrke SA, Pérez-Albacete Martinez C, Piattelli A, Shibli JA, Markovic A, Calvo Guirado JL. The influence of three different apical implant designs at stability and osseointegration process: experimental study in rabbits. Clin Oral Implants Res. 2017;28(3):355–61.
Herrero-Climent M, Santos-Garcia R, Jaramillo-Santos R, Romero-Ruiz MM, Fernandez-Palacin Lazaro-Calvo P, Bullon P, Rios-Santos JV. Assesment of Osstell ISQ’s reliability for implant stability measurement: a cross-sectional clinical study. Medicina Oral Pathologia Oral y Cirugia buccal. 2013;18:e877–82.
Gupta RK, Padmanabhan TV. Resonance frequence analysis. Indian J Dent Res. 2011;22(4):567–73.
Kang IH, Kim CW, Lim YJ, Kim MJ. A comparative study on the initial stability of different implants placed above the bone level using resonance frequence analysis. J Adv Prosthodont. 2011;3(4):190–9.
Becker W, Becker BE, Hujoel P, Abu Raz Z, Goldstein M, Smidt A. Prospective clinical trial evaluating a new implant system for implant survival, implant stability and radiographic bone changes. Clin Implant Dent Relat Res. 2013;15(1):15–21.
Barewal RM, Oates TW, Meredith N, Cochrane DL. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants. 2003;18(5):641–51.
Huwiler MA, Pjetursson BE, Bosshardt DD, Salvi GE, Lang NP. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant instillation. Clin Oral Implants Res. 2007;18(3):275–80.
Marković A, Calasan D, Colić S, Stojčev-Stajčć L, Janjić B, Mišić T. Implant stability in posterior maxilla: bone-condensing versus bone-drilling: a clinical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(5):557–63.
McCullough JJ, Klokkevold PR. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study. Clin Oral Implants Res. 2016. doi:10.1111/cir.12945.
Teixeira W, Ribeiro RF, Sato S, Pedrazzi V. Microleakage into and from two-stage implants: an in vitro comparative study. Int J Oral Maxillofac Implants. 2011;6(1):56–62.
Canullo L, Penarrocha-Oltra D, Soldini C, Mazzocco F, Penarrocha M, Covani U. Microbial assessment of the implant-abutment interface in different connectioins: cross-sectional study after 5 years of functional loading. Clin Oral Implants Res. 2015;26(4):426–34.
Serial posts:
- Abstract : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Introduction : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Introduction : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Material and methods : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- Results : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Results : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [4]
- Discussion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [5]
- Conclusion : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Abbreviations : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [3]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [4]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [5]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [6]
- References : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [7]
- Acknowledgements : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Author information : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [1]
- Author information : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results [2]
- Ethics declarations : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Additional files : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Rights and permissions : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- About this article : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 1 Patient recruitment : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 2 Surgical treatment protocol : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 3 Prosthetic treatment protocol : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Table 4 Clinical characteristics of the study cohort : Novel expandable short dental implants in situations with reduced vertical bone height—technical note and first results
- Fig. 1. a Closed short expandable dental implant (4.1 × 7 mm). The implant-abutment connection is characterised by an internal hexagon for rotation stability, combining the advantages of conical and parallel surfaces to reduce microgaps and micromovement [68]. The microthread concept and platform switching concept are implemented in the implant shoulder to reduce periimplant bone strain [53]. b Manual fixation of the expansion tool. Take note of the distance between both yellow rings. c Completion of the expansion process using the ratchet. Take note of the contact between both yellow rings. d Opened short expandable dental implant (4.1 × 7 mm). The expanded implant provides an increased bone-to-implant interface (pyramid shape) in the apical portion [54]. e Cross-section view of the implant apex. The apical expansion process is characterised by the unfolding of four wings, which are connected by four foils. D1: diameter of the closed implant. D2: diameter of the opened implant. fTop v
- Fig. 2. Cumulative implant survival over the follow-up period. The Kaplan-Meyer diagram visualises the analysis of implant survival in the maxilla and in the mandible (log rank test, p = 0.173) over the follow-up period up to 37 months (Table 4) : Novel expandable short dental implant
- Fig. 3. a Primary implant stability. The histogram visualises the distribution of the implant stability quotients (ISQ) for both jaws measured by resonance frequency analysis (Osstell AB, Göteborg, Sweden). b Secondary implant stability. The histogram shows the distribution of the implant stability quotients (ISQ) of osseointegrated implants. According to the measurement implant stability was classified as low with ISQ values < 60, medium with ISQ values 60–70, and high with values ISQ > 70 [34] : Novel expandable short dental implant
- Fig. 4. a–h Prosthetic restauration—follow-up examination. Intraoral and perioral views of a rehabilitated female patient. (She asked explicitly only for implantological treatment in the mandible.) : Novel expandable short dental implant
- Fig. 5. a Postoperative orthopantomogram. b Follow-up orthopantomogram. c Follow-up standard periapical radiogram (implants i42 and i44). d Follow-up standard periapical radiogram (implants i32 and i34) : Novel expandable short dental implant