Materials and methods : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [1]
The Ethics Committee for Animal Research of the Veterinary School of the University of Teramo (Teramo, Italy) approved the study protocol, which followed the guidelines established by the European Union Council Directive of February 2013 (R.D.53/2013).
Two female sheep, 4–5 years old, were included in the study. Clinical examination determined that all animals were in good general health. Exclusion criteria included general contraindications (pregnancy, systemic disease) to implant surgery and active infection, or severe inflammation in the area intended for implant placement.
The animals were given thiopental (Thiopental, Höchst, Austria) for induction of anesthesia as needed. After oro-tracheal intubation and ventilation, anesthesia was sustained with nitrous oxide oxygen with 0.5% halothane. Physiologic saline solution was administered during surgery for fluid replacement.
The edges of the iliac crests were exposed through a skin incision of 15 cm in length. The skin and facial layers were opened and closed separately.
After dissection of the soft tissues, the bone was exposed and five undersized osteotomic sites were prepared in each (left and right) side of the iliac crest. In the right side of each animal (test group), implant bone sites were prepared using only the pilot drill 1.8 mm in diameter. Ten Expander® 3.8 × 10 mm implants (NoDrill®, Milano, Italy) were inserted in the right side of both animals with a hand control wrench. Maximum insertion torque values were between 45 and 60 N/cm. In the left side of each animal (control group), implant bone sites were prepared using the following burs sequence: pilot drill 1.8 mm in diameter, twist drill 2.8 mm in diameter, and the final drill 3.2 mm in diameter. Ten 3.8 × 10 mm Dynamix® implants (Cortex, Shlomi, Israel) were inserted in the left sides of both animals. Maximum insertion torque values were between 30 and 45 N/cm. The implant drilling procedures were carried out under profuse saline irrigation (1000 rpm). Implants were inserted in cancellous type IV bone.
Serial posts:
- Abstract : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Introduction : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [1]
- Introduction : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [2]
- Materials and methods : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [1]
- Materials and methods : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [2]
- Materials and methods : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [3]
- Results : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Discussion : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [1]
- Discussion : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [2]
- Conclusions : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Availability of data and materials : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- References : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [1]
- References : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [2]
- References : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study [3]
- Acknowledgements : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Funding : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Author information : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Ethics declarations : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Additional information : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Rights and permissions : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- About this article : Single-drill implant induces bone corticalization during submerged healing: an in vivo pilot study
- Table 1 Basal bone volume percentage (basal %BV) was compared to %BV around implants after 2 months of healing in both groups. %BV in the test group was significantly higher than basal %BV (P < 0.05)
- Table 2 Mean values of histomorphometric parameters (%BIC and %BV) and biomechanical values (VAM, reverse torque, and ISQ) of each implant group : Single-drill implant induces bone corticalization
- Table 3 Statistical comparison (T test) of examined parameters between the test and control groups. The histomorphometric analysis demonstrated significant differences in BIC% and %BV values between
- Figure 1. Test group. The implant achieved a high osseointegration degree. The newly formed bone appeared well interconnected with the pre-existing trabeculae. The “corticalization” phenomenon is evident: the bone appears densified around a titanium implant (magnification × 8—toluidine blue) : Single-drill implant
- Figure 2. Test group. Implants in the test group showed an extremely high percentage of bone directly contacted to implant surface (magnification × 25—toluidine blue) : Single-drill implant
- Figure 3. Test group. The present histological photo showed a continuous thin layer of newly formed bone along the neck area of the implant (magnification × 25—toluidine blue) : Single-drill implant
- Figure 4. Control group. No bone condensation was possible with traditional burs and standard implant (magnification × 25—toluidine blue) : Single-drill implant
- Figure 5. Control group. Implants belonging to the control group showed some small surface areas not contacted with bone (magnification × 25—toluidine blue) : Single-drill implant
- Figure 6. Control group. Some implant thread areas were not covered by bone layer (magnification × 25—toluidine blue) : Single-drill implant