Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Representative SEM images after electrolysis of two different charges (cathodic and anodic) and two different currents (1 A and 1.5 A) are presented in Fig. 3.

Results : cleaning methods on contaminated healing abutments (2)

author: Thiha Tin Kyaw,Takao Hanawa, Shohei Kasugai | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Analysis of healing abutment surface roughness after electrolysis

Representative SEM images after electrolysis of two different charges (cathodic and anodic) and two different currents (1 A and 1.5 A) are presented in Fig. 3. The SEM images showed surface modification ranging from smoothening to roughening. The surfaces were between the electrolytic healing abutments and control unused healing abutment. Since the debris were covered in the surface of healing abutments especially in the region of interest, surface roughness after electrolysis in group II, low cathodic and anodic potential of group I and III were not taken into scoring for surface roughness. All 1 A and 1.5 A of cathodic and anodic potentials in both group I and III resulted in the least surface modification except 1 A of cathodic potential in group III. In group I, 1.5 A of cathodic potential induced the most alteration, followed by 1.5 A of anodic potential and the least alteration at 1 A of cathodic potential. In group III, the most surface alteration was seen after electrolysis with 1.5 A of anodic potential, followed by 1 A of anodic potential and the least change at 1 A of cathodic potential.

Then, a more objective and methodological visual assessment of the surface roughness was conducted using ranking system by Bain. Table 2 summarizes the results of the scores of 4 SEM images per electrolysis of each examiner and all of the examiners combined as well as the P values compared to the untreated control. As shown in Table 2, the mean results showed that cathodic 1.5 A in group I scored the highest degree of surface roughness (3.92 ± 0.17) among the examined groups. In contrast, lowest degree of surface roughness scoring (2.00 ± 0.17) was seen at cathodic 1 A in group III. In addition, cathodic 1.5 A in group III scored higher surface roughness (3.67 ± 0.00) than untreated control (grade 2).

Surface chemistry of clean and contaminated healing abutments

EDS analysis showed significant differences in the elemental composition of tested healing abutments. Table 3 showed the composition of tested healing abutments and unused healing abutment which are analyzed by EDS. The unused implant healing abutment contained titanium (97.56) and carbon (2.44). It was observed that all the tested healing abutments contain titanium. The highest titanium value (96.88) was seen in 1.5 A cathodic potential in group III, while the lowest titanium value (21.48) was found in 0.5 A anodic potential in group II. The debris part in the surface composition of healing abutments is represented by the presence of carbon. The highest carbon content (74.14) among all evaluated healing abutments was found in 0.5 A in anodic potential. However, 1.5 A and 1 A cathodic potential in group III showed the lowest carbon content (3.12 and 3.67) respectively. In group II, copper was observed in 0.5 A (4.38), 1 A (10.2), and 1.5 A (10.84) in anodic potential.

 

 

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in