Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Within the limitation of the present study, it can be concluded that the restoration design affected the failure load of ceramics.

Conclusion : Comparison of CAD/CAM manufactured implant-supported crowns

author: Elif Yein Mustafa Hayati Atala | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

Conclusions

Within the limitation of the present study, it can be concluded that the restoration design affected the failure load of ceramics. Monolithic design had a statistically significant effect on the failure load of two different ceramics (LDS > ZLS). Veneer application had opposite effects on two different ceramics which increased the failure load of ZLS and reduced it for LDS without a statistically significant difference. Nevertheless, both materials are suitable for implant-supported crown as the failure loads of whole crown restorations were higher than posterior occlusal loads. Different restorative materials did not influence the stress distribution, but monolithic restorations reduced the stress concentration on the implant and bone.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Abbreviations

CAD/CAM:

Computer-aided design/computer-aided manufacturing

LDS:

Lithium disilicate

ZLS:

Zirconia-reinforced lithium silicate

FEA:

Finite element analysis

Pmax:

Tensile strength

Pmin:

Compressive strength

References

  1. 1.

    Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16:26–35.

    PubMed Article PubMed Central Google Scholar 

  2. 2.

    Quaresma SE, Cury PR, Sendyk WR, Sendyk C. A finite element analysis of two different dental implants: stress distribution in the prosthesis, abutment, implant, and supporting bone. J Oral Implantol. 2008;34:1–6.

    PubMed Article PubMed Central Google Scholar 

  3. 3.

    Bonfante EA, Suzuki M, Lorenzoni FC, Sena LA, Hirata R, Bonfante G, et al. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns. Dent Mater. 2015;31:e168–77.

    PubMed Article PubMed Central Google Scholar 

  4. 4.

    Preis V, Hahnel S, Behr M, Bein L, Rosentritt M. In-vitro fatigue and fracture testing of CAD/CAM-materials in implant-supported molar crowns. Dent Mater. 2017;33:427–33.

    PubMed Article PubMed Central Google Scholar 

  5. 5.

    Kim JH, Lee S-J, Park JS, Ryu JJ. Fracture load of monolithic CAD/CAM lithium disilicate ceramic crowns and veneered zirconia crowns as a posterior implant restoration. Implant Dent. 2013;22:66–70.

    PubMed Article PubMed Central Google Scholar 

  6. 6.

    Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27:83–96.

    PubMed Article PubMed Central Google Scholar 

  7. 7.

    Ishibe M, Raigrodski AJ, Flinn BD, Chung K-H, Spiekerman C, Winter RR. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J Prosthet Dent. 2011;106:29–37.

    PubMed Article PubMed Central Google Scholar 

  8. 8.

    Priest G. Single-tooth implants and their role in preserving remaining teeth: a 10-year survival study. Int J Oral Maxillofac Implants. 1999;14:181–8.

    PubMed PubMed Central Google Scholar 

  9. 9.

    Taguchi K, Komine F, Fushiki R, Blatz MB, Kamio S, Matsumura H. Fracture resistance of single-tooth implant-supported zirconia-based indirect composite-layered molar restorations. Clin Oral Implants Res. 2014;25:983–91.

    PubMed Article PubMed Central Google Scholar 

  10. 10.

    Kassem AS, Atta O, El-Mowafy O. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont. 2012;21:28–32.

    PubMed Article PubMed Central Google Scholar 

  11. 11.

    Dogan DO, Gorler O, Mutaf B, Ozcan M, Eyuboglu GB, Ulgey M. Fracture resistance of molar crowns fabricated with monolithic all-ceramic CAD/CAM materials cemented on titanium abutments: an in vitro study. J Prosthodont. 2017;26:309–14.

    PubMed Article PubMed Central Google Scholar 

  12. 12.

    Sulaiman TA, Delgado AJ, Donovan TE. Survival rate of lithium disilicate restorations at 4 years: a retrospective study. J Prosthet Dent. 2015;114:364–6.

    PubMed Article PubMed Central Google Scholar 

  13. 13.

    Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc. 2010;141(Suppl 2):10S–4S.

    PubMed Article PubMed Central Google Scholar 

  14. 14.

    Traini T, Sinjari B, Pascetta R, Serafini N, Perfetti G, Trisi P, et al. The zirconia-reinforced lithium silicate ceramic: lights and shadows of a new material. Dent Mater J. 2016;35:748–55.

    PubMed Article PubMed Central Google Scholar 

  15. 15.

    da Cunha LF, Mukai E, Hamerschmitt RM, Correr GM. Fabrication of lithium silicate ceramic veneers with a CAD/CAM approach: a clinical report of cleidocranial dysplasia. J Prosthet Dent. 2015;113:355–9.

    PubMed Article PubMed Central Google Scholar 

  16. 16.

    Preis V, Behr M, Hahnel S, Rosentritt M. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dent Mater. 2015;31:1363–9.

    PubMed Article PubMed Central Google Scholar 

  17. 17.

    Sato T, Anami L, Melo R, Valandro L, Bottino M. Effects of surface treatments on the bond strength between resin cement and a new zirconia-reinforced lithium silicate ceramic. Oper Dent. 2016;41:284–92.

    PubMed Article PubMed Central Google Scholar 

  18. 18.

    Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32:908–14.

    PubMed Article PubMed Central Google Scholar 

  19. 19.

    Zimmermann M, Koller C, Mehl A, Hickel R. Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: preliminary clinical results after 12 months. Quintessence Int. 2017;48:19–25.

    PubMed PubMed Central Google Scholar 

  20. 20.

    Guven S, Atalay Y, Asutay F, Ucan MC, Dundar S, Karaman T, Gunes N. Comparison of the effects of different loading locations on stresses transferred to straight and angled implant-supported zirconia frameworks: a finite element method study. Biotechnol Biotechnol Eq. 2015;29:766–72.

    Article Google Scholar 

  21. 21.

    Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91:144–50.

    PubMed Article PubMed Central Google Scholar 

  22. 22.

    Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants. 2004;19:247–59.

    PubMed PubMed Central Google Scholar 

  23. 23.

    Pjetursson BE, Karoussis I, Burgin W, Bragger U, Lang NP. Patients’ satisfaction following implant therapy. A 10-year prospective cohort study. Clin Oral Implants Res. 2005;16:185–93.

    PubMed Article PubMed Central Google Scholar 

  24. 24.

    Misch CE. Dental implant prosthetics: Elsevier Health Sciences; 2014.

  25. 25.

    Sahin S, Cehreli MC, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent. 2002;30:271–82.

    PubMed Article PubMed Central Google Scholar 

  26. 26.

    Oilo M, Kvam K, Gjerdet NR. Simulation of clinical fractures for three different all-ceramic crowns. Eur J Oral Sci. 2014;122:245–50.

    PubMed PubMed Central Article Google Scholar 

  27. 27.

    Rohr N, Coldea A, Zitzmann NU, Fischer J. Loading capacity of zirconia implant supported hybrid ceramic crowns. Dent Mater. 2015;31:e279–88.

    PubMed Article PubMed Central Google Scholar 

  28. 28.

    Oilo M, Kvam K, Tibballs JE, Gjerdet NR. Clinically relevant fracture testing of all-ceramic crowns. Dent Mater. 2013;29:815–23.

    PubMed Article PubMed Central Google Scholar 

  29. 29.

    Silva TM, Salvia AC, Carvalho RF, Silva EG, Pagani C. Effects of different polishing protocols on lithium disilicate ceramics. Braz Dent J. 2015;26:478–83.

    PubMed Article PubMed Central Google Scholar 

  30. 30.

    Zhao K, Wei YR, Pan Y, Zhang XP, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater. 2014;30:164–71.

    PubMed Article PubMed Central Google Scholar 

  31. 31.

    Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig. 2013;17:275–84.

    PubMed Article PubMed Central Google Scholar 

  32. 32.

    Silva NR, Bonfante EA, Martins LM, Valverde GB, Thompson VP, Ferencz JL, et al. Reliability of reduced-thickness and thinly veneered lithium disilicate crowns. J Dent Res. 2012;91:305–10.

    PubMed PubMed Central Article Google Scholar 

  33. 33.

    de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015;114:59–66.

    PubMed Article PubMed Central Google Scholar 

  34. 34.

    Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010;23:434–42.

    PubMed PubMed Central Google Scholar 

  35. 35.

    Dibner AC, Kelly JR. Fatigue strength of bilayered ceramics under cyclic loading as a function of core veneer thickness ratios. J Prosthet Dent. 2016;115:335–40.

    PubMed Article PubMed Central Google Scholar 

  36. 36.

    Ramos CM, Cesar PF, Lia Mondelli RF, Tabata AS, de Souza SJ, Sanches Borges AF. Bond strength and Raman analysis of the zirconia-feldspathic porcelain interface. J Prosthet Dent. 2014;112:886–94.

    PubMed Article PubMed Central Google Scholar 

  37. 37.

    Rinke S, Pabel A-K, Rödiger M, Ziebolz D. Chairside fabrication of an all-ceramic partial crown using a zirconia-reinforced lithium silicate ceramic. Case Rep in Dent. 2016;2016:1354186.

    Google Scholar 

  38. 38.

    Al-Thagafi R, Al-Zordk W, Saker S. Influence of surface conditioning protocols on reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic. J Adhes Dent. 2016;18:135–41.

    PubMed PubMed Central Google Scholar 

  39. 39.

    Weyhrauch M, Igiel C, Scheller H, Weibrich G, Lehmann KM. Fracture strength of monolithic all-ceramic crowns on titanium implant abutments. Int J Oral Maxillofac Implants. 2016;31:304–9.

    PubMed Article PubMed Central 


id post:
New thoughts
Me:
search
glossary
en in