Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (4)
Veneer application provided additional strength to the ZLS crowns in contrast to the LDS crowns. The higher failure load of the veneered ZLS crowns (2202.55 N; group L-V 2077.37 N) may be associated with the higher flexural strength of the veneering porcelain VM-11 (100 MPa; emax Ceram 90 MPa). These veneered groups had a statistically significant difference from the monolithic groups that caused the rejection of the second hypothesis. On the other hand, the third hypothesis was accepted because there was no statistically significant difference between these veneered groups.
The finite element analysis (FEA) has been widely used in implant dentistry to evaluate the effect of both biomechanical and clinical factors on implant success. This analysis identifies stresses and displacements on the prosthesis-implant-bone complex which can be unachievable for other biomechanical methods. Therefore, in this study, FEA was used to compare the stress distribution of different glass ceramics and the effect of veneering on the prosthesis-implant-bone complex.
Since the supporting bone is affected by the magnitude and direction of transferring stress to the implants, a veneering material has a considerable effect on the stress distribution of the prosthesis-implant-bone complex because the non-uniform distribution of occlusal forces can lead to osseointegration failure. However, according to our FEA results, different veneering materials did not affect the stress distribution. In order to evaluate stress concentration areas, our results have been in accordance with previous studies as stresses were concentrated at the crestal bone, implant neck level. Although, different restorative materials demonstrated similar stress distribution on the abutment, implant, and bone, it is possible to conclude that monolithic crowns reduced the stress concentration on the peri-implant bone (Fig. 6a–d). This situation was supported by decreased stress concentration on the implant with monolithic restorations. The possible reason is that the stresses were more concentrated on the ceramic surface and reduced the load transmission to the implant and finally to the bone.
Serial posts:
- Comparison of CAD/CAM manufactured implant-supported crowns with different analyses
- Background : Comparison of CAD/CAM manufactured implant-supported crowns
- Method : Comparison of CAD/CAM manufactured implant-supported crowns (1)
- Method : Comparison of CAD/CAM manufactured implant-supported crowns (2)
- Method : Comparison of CAD/CAM manufactured implant-supported crowns (3)
- Results : Comparison of CAD/CAM manufactured implant-supported crowns
- Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (1)
- Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (2)
- Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (3)
- Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (4)
- Discussion : Comparison of CAD/CAM manufactured implant-supported crowns (5)
- Conclusion : Comparison of CAD/CAM manufactured implant-supported crowns
- Table 1 The materials used in the study
- Table 2 The materials in the groups
- Figure 1. Crown restoration design
- Table 3 The properties of the materials used in FEA and the references of these values
- Table 4 Descriptive statistical analysis of the groups
- Figure 2. The graph of the interaction of the materials and restoration desig
- Figure 3. a–d Maximum principal stress distribution on crown restoration.
- Figure 4. a–d Von Mises stress distribution on implant.
- Figure 5. a–d Von Mises stress distribution on abutment.
- Figure 6. Von Mises stress distribution on bone