Fig. 9. Scatter diagrams illustrating the distribution of angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 9. Scatter diagrams illustrating the distribution of angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 8. Box plot diagrams illustrating the distribution of maximum angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 8. Box plot diagrams illustrating the distribution of maximum angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 7. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 7. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 6. Box plot diagrams illustrating the distribution of maximum horizontal apex deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 6. Box plot diagrams illustrating the distribution of maximum horizontal apex deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 5. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 5. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 4. Box plot diagrams illustrating the distribution of maximum horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 4. Box plot diagrams illustrating the distribution of maximum horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 3. Box plot diagrams illustrating the distribution of vertical deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 3. Box plot diagrams illustrating the distribution of vertical deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 2. a Schematic diagram illustrating the measurement of vertical, horizontal neck, horizontal apex, and angle deviations. b Three forms of horizontal deviation were measured: maximum, mesiodistal, and buccolingual directions
Fig. 2. a Schematic diagram illustrating the measurement of vertical, horizontal neck, horizontal apex, and angle deviations. b Three forms of horizontal deviation we...
Fig. 1. Flowchart summarizing the different phases of the experiment
Fig. 1. Flowchart summarizing the different phases of the experiment
Vertical implant deviation Anterior implantPosterior implantp values between anterior and posterior implants FGPGFHFGPGFHMean (mm)0.210.530.300.340.640.49FG = 0.07SD (mm)0.120.520.240.230.370.22PG = 0.27Maximum (mm)0.391.650.810.801.130.80FH = 0.05Minimum (mm)0.090.050.070.040.200.07p valuesAll groups = 0.12All groups = 0.08 Maximum horizontal implant neck deviation ...
Abduo, J., Lau, D. Accuracy of static computer-assisted implant placement in anterior and posterior sites by clinicians new to implant dentistry: in vitro comparison of fully guided, pilot-guided, and freehand protocols. Int J Implant Dent 6, 10 (2020). https://doi.org/10.1186/s40729-020-0205-3
Download citation
Received: 31 October 2019
Accepted: 21 January 2020
Published: 11 March 2020
DOI:...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were m...
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This study was approved by the University of Melbourne Human Research Ethics Committee (1851406.1). The study complied with the Declaration of Helsinki. All participants were aware of the nature of the study and provided their consent prior to the commencement of the study.
Not applicable
Jaafar Abduo, and Douglas Lau declare that they have no competing interests.
Associate Professor in Prosthodontics, Convenor of Postgraduate Diploma in Clinical Dentistry (Implants), Melbourne Dental School, Melbourne University, 720 Swanston Street, Melbourne, VIC, 3010, Australia
Jaafar Abduo
Periodontist, Private Practice, Melbourne University, Melbourne, VIC, Australia
Douglas Lau
You can also search for this author in PubMed Google Scholar
You can also search fo...
The implants, surgical kits, and guide sleeves were provided by Straumann Australia. This study has been funded by the Kernot Early Career Researcher Award. No financial income for conducting the study was received by the authors.
The authors would also like to thank Mr. Attila Gergely for his technical support in developing the simulated case and the input of the team of Digital Dental Network in designing the guides.
Deeb GR, Allen RK, Hall VP, Whitley D 3rd, Laskin DM, Bencharit S. How accurate are implant surgical guides produced with desktop stereolithographic 3-dimentional printers? J Oral Maxillofac Surgery. 2017;75:2551–9.
Horwitz J, Zuabi O, Machtei EE. Accuracy of a computerized tomography-guided template-assisted implant placement system: an in vitro study. Clin Oral Implants Res. 2009;20:1156–62...
Rungcharassaeng K, Caruso JM, Kan JY, Schutyser F, Boumans T. Accuracy of computer-guided surgery: a comparison of operator experience. J Prosthet Dent. 2015;114:407–13.
Park SJ, Leesungbok R, Cui T, Lee SW, Ahn SJ. Reliability of a CAD/CAM surgical guide for implant placement: an in vitro comparison of surgeons' experience levels and implant sites. Int J Prosthodont. 2017;30:367–9.
Marheine...
Belser UC, Mericske-Stern R, Bernard JP, Taylor TD. Prosthetic management of the partially dentate patient with fixed implant restorations. Clin Oral Implants Res. 2000;11:126–45.
Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants. 2004;19:43–61.
Ramaglia L, Toti P, Sbordone...
Three-dimensional
Computer-aided design/computer-aided manufacturing
Cone beam computed tomography
Digital Imaging and Communications in Medicine
Fully guided
Freehand
Pilot-guided
Static computer-assisted implant placement
Surface tessellation language
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Within the limitations of the present study, it can be hypothesized that apart from vertical deviation, the FG protocol is more accurate than the PG and FH protocols for all the evaluated variables in the hands of inexperienced clinicians. The PG and FH protocols were generally similar. The FG protocol did not seem to be influenced by the position of the placed implants, while the PG and FH protoc...
For the majority of the evaluated variables, there was a tendency for the posterior implants to suffer from more deviation than anterior implants. This is in accordance with several published reports [5, 21, 22]. Interestingly, implants placed by the FG protocol seemed to be less vulnerable to inaccuracy by changing the implant sites, while the PG and FH protocols showed more horizontal and angle ...
The superior accuracy and the less variation of the FG protocol is most likely related to the control of all the drilling steps and the implant placement via sequential use of precision sleeves. This eliminated the manual orientation and handling of the drills at any stage of drilling or implant placement. In accordance with these observations, Noharet et al. reported a better accuracy of the FG p...
The overall outcome of this study indicates the superiority of the FG protocol in comparison to PG and FH protocols for placing single implants. With the exception of vertical deviation, this was obvious for horizontal neck, horizontal apex, and angle deviations that were closer to the planned implant for the FG protocol than the other protocols. In addition, this superiority was shown for anterio...
In relation to the maximum angle deviation (Fig. 8), the FG protocol had less deviation than the other protocols for anterior (2.42 ± 0.98°) and posterior (2.61 ± 1.23°) implants. The PG (4.65 ± 1.78°) and FH (4.79 ± 2.08°) protocols were similar for anterior implant placement, while the FH protocol seemed more accurate for posterior implants (4.77 ± 2.09°) than the ...
In general, for all the variables, there was a tendency for the FG protocol to yield more accurate implant placement than other protocols (Table 1). In relation to vertical deviation, the PG protocol seemed to be associated with more errors. However, there was no significant difference in vertical deviation among all the protocols. Figure 3 indicates that the PG protocol was associated with deep...
The vertical deviation was measured by calculating the discrepancy along the long axis of the planned implant at the center of the platform (Fig. 2a). In addition to the magnitude of the deviation, the direction of the error was determined. The horizontal deviations were measured at the neck and the apex of the planned implant. The angle deviation was computed by measuring the angle of the long a...
For all the protocols, straight bone level Straumann dummy implants were planned. The anterior implants were 4.1 × 10 mm, while the posterior implants were 4.8 × 10 mm. The anterior implants were planned to be placed 2 mm subcrestal, while the posterior implants were planned to be placed 1 mm subcrestal.
For the conventional protocols, the clinicians had access to physical intact Ni...
The soft tissue silicone former was removed from the Nissin model to simulate bone anatomy. Subsequently, this model was duplicated with clear resin material mixed with barium sulfate and scanned by a cone beam computed tomography (CBCT) machine to generate cross-sectional DICOM images.
The DICOM images were imported to the implant planning software programs. For the FH protocol, the 2D DICOM ima...
A total of 10 qualified clinicians with a minimum of 3 years of general practice experience were invited to participate in the study. The number of participants was similar to previously published studies [12, 19], and was confirmed by sample size calculation. A mean horizontal deviation of 1 mm and an expected standard deviation of 0.75 mm that were reported from earlier studies [13, 19] were ...
Despite all the advantages of sCAIP protocols, several studies reported that they are still prone to errors and complications [7,8,9, 17, 18]. The FG and PG protocols still require thorough planning and surgical understanding and skills [11]. For multiple implants and long-span edentulous ridges, guided surgery has the advantages of being more reliable, more comfortable for the patient, and more r...
Implant treatment is a growing field in dentistry, and many clinicians aim to increase their scope of practice by including such treatment. One of the main challenges encountered by clinicians new to implant dentistry is the determination and controlling of implant location. It is the consensus that implant placement must be planned to achieve an acceptable position for an ideal restorative outcom...
One of the challenges encountered by clinicians new to implant dentistry is the determination and controlling of implant location. This study compared the accuracy of fully guided (FG) and pilot-guided (PG) static computer-assisted implant placement (sCAIP) protocols against the conventional freehand (FH) protocol for placing single anterior and posterior implants by recently introduced clinicians...
Fig. 9. Scatter diagrams illustrating the distribution of angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 9. Scatter diagrams illustrating the distribution of angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 8. Box plot diagrams illustrating the distribution of maximum angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 8. Box plot diagrams illustrating the distribution of maximum angle deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 7. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 7. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 6. Box plot diagrams illustrating the distribution of maximum horizontal apex deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 6. Box plot diagrams illustrating the distribution of maximum horizontal apex deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 5. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 5. Scatter diagrams illustrating the distribution of horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 4. Box plot diagrams illustrating the distribution of maximum horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 4. Box plot diagrams illustrating the distribution of maximum horizontal neck deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 3. Box plot diagrams illustrating the distribution of vertical deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 3. Box plot diagrams illustrating the distribution of vertical deviation of each protocol. a Anterior implants. b Posterior implants
Fig. 2. a Schematic diagram illustrating the measurement of vertical, horizontal neck, horizontal apex, and angle deviations. b Three forms of horizontal deviation were measured: maximum, mesiodistal, and buccolingual directions
Fig. 2. a Schematic diagram illustrating the measurement of vertical, horizontal neck, horizontal apex, and angle deviations. b Three forms of horizontal deviation we...
Fig. 1. Flowchart summarizing the different phases of the experiment
Fig. 1. Flowchart summarizing the different phases of the experiment
Vertical implant deviation Anterior implantPosterior implantp values between anterior and posterior implants FGPGFHFGPGFHMean (mm)0.210.530.300.340.640.49FG = 0.07SD (mm)0.120.520.240.230.370.22PG = 0.27Maximum (mm)0.391.650.810.801.130.80FH = 0.05Minimum (mm)0.090.050.070.040.200.07p valuesAll groups = 0.12All groups = 0.08 Maximum horizontal implant neck deviation ...
Abduo, J., Lau, D. Accuracy of static computer-assisted implant placement in anterior and posterior sites by clinicians new to implant dentistry: in vitro comparison of fully guided, pilot-guided, and freehand protocols. Int J Implant Dent 6, 10 (2020). https://doi.org/10.1186/s40729-020-0205-3
Download citation
Received: 31 October 2019
Accepted: 21 January 2020
Published: 11 March 2020
DOI:...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were m...
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This study was approved by the University of Melbourne Human Research Ethics Committee (1851406.1). The study complied with the Declaration of Helsinki. All participants were aware of the nature of the study and provided their consent prior to the commencement of the study.
Not applicable
Jaafar Abduo, and Douglas Lau declare that they have no competing interests.
Associate Professor in Prosthodontics, Convenor of Postgraduate Diploma in Clinical Dentistry (Implants), Melbourne Dental School, Melbourne University, 720 Swanston Street, Melbourne, VIC, 3010, Australia
Jaafar Abduo
Periodontist, Private Practice, Melbourne University, Melbourne, VIC, Australia
Douglas Lau
You can also search for this author in PubMed Google Scholar
You can also search fo...
The implants, surgical kits, and guide sleeves were provided by Straumann Australia. This study has been funded by the Kernot Early Career Researcher Award. No financial income for conducting the study was received by the authors.
The authors would also like to thank Mr. Attila Gergely for his technical support in developing the simulated case and the input of the team of Digital Dental Network in designing the guides.
Deeb GR, Allen RK, Hall VP, Whitley D 3rd, Laskin DM, Bencharit S. How accurate are implant surgical guides produced with desktop stereolithographic 3-dimentional printers? J Oral Maxillofac Surgery. 2017;75:2551–9.
Horwitz J, Zuabi O, Machtei EE. Accuracy of a computerized tomography-guided template-assisted implant placement system: an in vitro study. Clin Oral Implants Res. 2009;20:1156–62...
Rungcharassaeng K, Caruso JM, Kan JY, Schutyser F, Boumans T. Accuracy of computer-guided surgery: a comparison of operator experience. J Prosthet Dent. 2015;114:407–13.
Park SJ, Leesungbok R, Cui T, Lee SW, Ahn SJ. Reliability of a CAD/CAM surgical guide for implant placement: an in vitro comparison of surgeons' experience levels and implant sites. Int J Prosthodont. 2017;30:367–9.
Marheine...
Belser UC, Mericske-Stern R, Bernard JP, Taylor TD. Prosthetic management of the partially dentate patient with fixed implant restorations. Clin Oral Implants Res. 2000;11:126–45.
Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: anatomic and surgical considerations. Int J Oral Maxillofac Implants. 2004;19:43–61.
Ramaglia L, Toti P, Sbordone...
Three-dimensional
Computer-aided design/computer-aided manufacturing
Cone beam computed tomography
Digital Imaging and Communications in Medicine
Fully guided
Freehand
Pilot-guided
Static computer-assisted implant placement
Surface tessellation language
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Within the limitations of the present study, it can be hypothesized that apart from vertical deviation, the FG protocol is more accurate than the PG and FH protocols for all the evaluated variables in the hands of inexperienced clinicians. The PG and FH protocols were generally similar. The FG protocol did not seem to be influenced by the position of the placed implants, while the PG and FH protoc...
For the majority of the evaluated variables, there was a tendency for the posterior implants to suffer from more deviation than anterior implants. This is in accordance with several published reports [5, 21, 22]. Interestingly, implants placed by the FG protocol seemed to be less vulnerable to inaccuracy by changing the implant sites, while the PG and FH protocols showed more horizontal and angle ...
The superior accuracy and the less variation of the FG protocol is most likely related to the control of all the drilling steps and the implant placement via sequential use of precision sleeves. This eliminated the manual orientation and handling of the drills at any stage of drilling or implant placement. In accordance with these observations, Noharet et al. reported a better accuracy of the FG p...
The overall outcome of this study indicates the superiority of the FG protocol in comparison to PG and FH protocols for placing single implants. With the exception of vertical deviation, this was obvious for horizontal neck, horizontal apex, and angle deviations that were closer to the planned implant for the FG protocol than the other protocols. In addition, this superiority was shown for anterio...
In relation to the maximum angle deviation (Fig. 8), the FG protocol had less deviation than the other protocols for anterior (2.42 ± 0.98°) and posterior (2.61 ± 1.23°) implants. The PG (4.65 ± 1.78°) and FH (4.79 ± 2.08°) protocols were similar for anterior implant placement, while the FH protocol seemed more accurate for posterior implants (4.77 ± 2.09°) than the ...
In general, for all the variables, there was a tendency for the FG protocol to yield more accurate implant placement than other protocols (Table 1). In relation to vertical deviation, the PG protocol seemed to be associated with more errors. However, there was no significant difference in vertical deviation among all the protocols. Figure 3 indicates that the PG protocol was associated with deep...
The vertical deviation was measured by calculating the discrepancy along the long axis of the planned implant at the center of the platform (Fig. 2a). In addition to the magnitude of the deviation, the direction of the error was determined. The horizontal deviations were measured at the neck and the apex of the planned implant. The angle deviation was computed by measuring the angle of the long a...
For all the protocols, straight bone level Straumann dummy implants were planned. The anterior implants were 4.1 × 10 mm, while the posterior implants were 4.8 × 10 mm. The anterior implants were planned to be placed 2 mm subcrestal, while the posterior implants were planned to be placed 1 mm subcrestal.
For the conventional protocols, the clinicians had access to physical intact Ni...
The soft tissue silicone former was removed from the Nissin model to simulate bone anatomy. Subsequently, this model was duplicated with clear resin material mixed with barium sulfate and scanned by a cone beam computed tomography (CBCT) machine to generate cross-sectional DICOM images.
The DICOM images were imported to the implant planning software programs. For the FH protocol, the 2D DICOM ima...
A total of 10 qualified clinicians with a minimum of 3 years of general practice experience were invited to participate in the study. The number of participants was similar to previously published studies [12, 19], and was confirmed by sample size calculation. A mean horizontal deviation of 1 mm and an expected standard deviation of 0.75 mm that were reported from earlier studies [13, 19] were ...
Despite all the advantages of sCAIP protocols, several studies reported that they are still prone to errors and complications [7,8,9, 17, 18]. The FG and PG protocols still require thorough planning and surgical understanding and skills [11]. For multiple implants and long-span edentulous ridges, guided surgery has the advantages of being more reliable, more comfortable for the patient, and more r...
Implant treatment is a growing field in dentistry, and many clinicians aim to increase their scope of practice by including such treatment. One of the main challenges encountered by clinicians new to implant dentistry is the determination and controlling of implant location. It is the consensus that implant placement must be planned to achieve an acceptable position for an ideal restorative outcom...
One of the challenges encountered by clinicians new to implant dentistry is the determination and controlling of implant location. This study compared the accuracy of fully guided (FG) and pilot-guided (PG) static computer-assisted implant placement (sCAIP) protocols against the conventional freehand (FH) protocol for placing single anterior and posterior implants by recently introduced clinicians...
Figure 6. Figure 6. a–d Von Mises stress distribution on bone. From a to d: L-M, ZL-M, L-V, and ZL-V respectively. The stress concentration occurred in the cortical bone around the neck of the implant. Groups L-M and ZL-M were quite similar and reduced stress
Figure 5. a–d Von Mises stress distribution on abutment. From a to d: L-M, ZL-M, L-V, and ZL-V respectively. Von Mises stresses were relatively similar and concentrated at the coronal part of the abutment in all groups
Figure 5. a–d Von Mises stress distribution on abutment. From a to d: L-M, ZL-M, L-V, and ZL-V respectively. Von Mises stresses were relatively similar and concentrated ...
Figure 4. a–d Von Mises stress distribution on implant. From a to d: L-M, ZL-M, L-V, and ZL-V respectively
Figure 4. a–d Von Mises stress distribution on implant. From a to d: L-M, ZL-M, L-V, and ZL-V respectively
Figure 3. a–d Maximum principal stress distribution on crown restoration. From a to d: L-M, ZL-M, L-V, and ZL-V respectively
Figure 3. a–d Maximum principal stress distribution on crown restoration. From a to d: L-M, ZL-M, L-V, and ZL-V respectively
Figure 2. The graph of the interaction of the materials and restoration design
Group
N
Mean (N)
Standard deviation
Minimum
Maximum
L-M
12
2891.88a
410.12
2079.74
3486.96
L-V
12
2077.37bc
356.59
1220.96
2493.39
ZL-M
12
1750.28c
314.96
1084.36
2163.95
ZL-V
12
2202.55b
503.14
1292.20
2912.81
Material
Young’s modulus (GPa)
Poisson ratio
Reference
E.max CAD
95
0.20
[1]
Vita Suprinity
65
0.23
[2]
Vita VM 11
65
0.23
*
E.max Ceram
64
0.23
[4]
Implant and abutment
114
0.34
[5]
Cortical bone
13.7
0.3
[5]
Spongious bone
1
0.3
[5]
Figure 1. Crown restoration design
Groups
N
Materials
L-M
12
IPS e-max CADIPS e.max CAD glaze
L-V
12
IPS e-max CADe.max Ceram DentinIPS e.max Ceram Glaze
ZL-M
12
Vita SuprinityVita Akzent Plus
ZL-V
12
Vita SuprinityVM-11Vita Akzent Plus
Material
Chemical composition (%)
Coefficient of thermal expansion (10−6 K−1)
Flexural strength (MPa)
Manufacturer
IPS e.max CAD; lithium disilicate glass ceramic (LDS)
SiO2 (57–80), Li2O (11–19), K2O (0–13), P2O5 (0–11), ZrO2 (0–8), ZnO (0–8), Al2O3 (0–5), MgO (0–5), coloring oxides (0–8)
10.2
360
Ivoclar Vivadent
IPS e.max Ceram; low-fusing nan...
Conclusions
Within the limitation of the present study, it can be concluded that the restoration design affected the failure load of ceramics. Monolithic design had a statistically significant effect on the failure load of two different ceramics (LDS > ZLS). Veneer application had opposite effects on two different ceramics which increased the failure load of ZLS and reduced it for LDS witho...
Zheng et al. compared the stress distribution of the same veneering ceramic on different cores and concluded that the zirconia core was clearly different from other materials with higher tensile stresses at the veneer core interface because the increasing differences between the elasticity modulus of the core and the veneer transmitted higher stress concentrations to the cores. Con...
Veneer application provided additional strength to the ZLS crowns in contrast to the LDS crowns. The higher failure load of the veneered ZLS crowns (2202.55 N; group L-V 2077.37 N) may be associated with the higher flexural strength of the veneering porcelain VM-11 (100 MPa; emax Ceram 90 MPa). These veneered groups had a statistically significant difference from the monoli...
Similar results were presented in a study of Traini et al. as it was concluded that ZLS was comparable to that of existing zirconia-based ceramics and was suitable for oral function even in the posterior regions. In the literature, there have been few studies on this ceramic and a limited number of them include the failure load of the material. In one of these studi...
In literature, it has been stated that the failure load of LDS crowns was higher than veneered zirconia and could be comparable with metal ceramic systems. Doğan et al. evaluated the fracture strength of different CAD/CAM-manufactured crowns and concluded that the monolithic LDS crowns had the highest fracture resistance. Present study confirmed as monolithic LDS crowns demonstrated so satisfying...
Discussion
Implant-supported restorations have been accepted as an alternative treatment for the rehabilitation of edentulous spaces. Despite the high success rates, implant failures are inevitable and classified as early or late implant failures. Late implant failures are observed after prosthetic restoration which is primarily related to biomechanical complications. Since occlusal loads are t...
Results
Descriptive analysis (mean, standard deviation (SD), minimum, maximum) of the groups is presented in Table 4.
Group L-M exhibited the highest failure load values (2891.88 N ± 410.12 N), and the lowest values were observed in group ZL-M (1750.28 N ± 314.96 N). Two-way ANOVA indicated a statistically significant difference between materials and veneering technique (p = 0.00 < ...
Statistical analysis
The statistical analysis was performed with SPSS 24.0 (SPSS Inc, Chicago, USA). The Kolmogorov–Smirnov normality test was used to evaluate whether the data distribution of the groups was normal. The homogeneity of the variances was analyzed by Levene’s test. Since test results indicated that data distribution of the groups was normal and the variances were homogenous,...
All crowns were subjected to a combination firing that included crystallization and glaze firing according to each manufacturer’s guidelines in the ceramic furnace (Vita Vacumat 6000 M, Vita Zahnfabrik, Bad Sackingen, Germany).
For veneered restorations, the design mode was changed to “split,” and the core was constructed in 0.6-mm thickness. In group L-V (n = 12), e.max ...
Methods
Preparation of test groups
This study tested the current glass ceramic ZLS by comparing LDS with monolithic and conventional veneering techniques in implant-supported crowns: group L-M: lithium disilicate ceramic (monolithic), group L-V: lithium disilicate ceramic (conventional veneering), group ZL-M: zirconia-reinforced lithium silicate ceramic (monolithic), group ZL-V: zirconia-reinf...
Background
Implants have been successfully used to replace missing teeth for many years. Notwithstanding the high success rates, complications such as screw loosening and/or fracture, prosthesis fracture, and even implant fracture are inevitable. The reasons of the complication may be related to decreased proprioception and low tactile sensitivity which makes implant-supported crowns more susc...
Abstract
Background
Present study compared the failure load of CAD/CAM-manufactured implant-supported crowns and the stress distribution on the prosthesis-implant-bone complex with different restoration techniques.
Methods
The materials were divided into four groups: group L-M: lithium disilicate ceramic (LDS, monolithic), group L-V: LDS ceramic (veneering), group ZL-M: zirconia-reinforced l...