Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
It has been reported that when micromovement of an implant occurs, an ingrowth of soft tissue occurs after the implant is embedded; therefore, it is difficult to achieve osseointegration [32-34]. Brunski et al. [35] reported that when immediate loading or early loading is carried out, micromovements of the implant should be controlled to 100 μm or less and excessive movement of the implant not only impairs osseointegration but also encourages the growth of connective tissue. In the experimental results of the present study, the displacement of the contact model, which assumed immediate loading, showed greater values than the fixation model, which assumed delayed loading. That is to say, in the FEA models constructed in the present study, the results support the notion that micromovements are likely to occur during immediate loading and that suppressing these as much as possible is necessary for successful osseointegration.
When assessing stress values of FEA models, it is desirable to do so after confirmation of the validity of the models [11]. Therefore, we first confirmed the validity of the FEA models from comparisons of the correlation coefficients of the displacements under loading conditions in the experimental and contact models. Then, the equivalent stress values and their sites of occurrence were assessed to examine how peri-implant bone is impacted by differences in boundary conditions and loading points.
The equivalent stress values in both the contact and fixation models were smallest for central loading, while buccal and lingual loading showed substantially equivalent values greater than that of central loading. Equivalent stress occurrence sites were observed to be high in bone surrounding the implant neck on the loading side, similar to previous reports [36,37]. Hobo et al. [38] stated that while implants were resistant to vertical pressure, horizontal pressure (bending movements) generated torque in the implants and had more harmful effects; therefore, it would be wise to limit the occlusal contact of the superstructure to vertical pressure and avoid horizontal pressure as much as possible. This was also consistent with reports that lateral loading generated more stress than vertical loading, as is also found in Sato et al.’s report using a geometric analysis [39], and supports the existing clinical concept that a lateral force applied to an implant greatly increases the stress in the surrounding bone.
Serial posts:
- Abstract : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Background : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Background : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [5]
- Conclusions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Abbreviations : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Acknowledgements : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Author information : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Additional information : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Rights and permissions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- About this article : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 1 Mechanical properties of the materials used in the FEA : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 2 Coefficients of variation in implant displacement under loading conditions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 3 Three-way ANOVA (displacement in the buccolingual direction [x-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 4 Three-way ANOVA (displacement in the mesiodistal direction [y-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 5 Three-way ANOVA (displacement in the inferior-superior direction [z-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 6 Three-way ANOVA (equivalent stress) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 7 Coefficients of variation for equivalent stresses : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Figure 1. An artificial mandible. : A biomechanical investigation of mandibular molar implant
- Figure 2. Three implants were embedded in an artificial mandible. : A biomechanical investigation of mandibular molar implant
- Figure 3. An experimental model. (a) Buccal loading, (b) central loading, and (c) lingual loading are shown. : A biomechanical investigation of mandibular molar implant
- Figure 4. An experimental model loading test. : A biomechanical investigation of mandibular molar implant
- Figure 5. An FEA model. (a) Buccal loading, (b) central loading, and (c) lingual loading are shown. : A biomechanical investigation of mandibular molar implant
- Figure 6. Implant displacement under loading conditions. : A biomechanical investigation of mandibular molar implant
- Figure 7. The displacement of the three implants. (M) Mesial side, (D) Distal side, (B) Buccal side, and (L) Lingual side are shown. : A biomechanical investigation of mandibular molar implant
- Figure 8. Displacement in the buccolingual direction (x-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 9. Displacement in the mesiodistal direction (y-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 10. Displacement in the inferior-superior direction (z-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 11. The distribution of equivalent stress (MPa) around the first molar. : A biomechanical investigation of mandibular molar implant
- Figure 12. Equivalent stresses at (a) the neck and (b) the tip of the implant. : A biomechanical investigation of mandibular molar implant