Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
At all three loading sites, no. 36 had the greatest displacement; the more mesial the implant, the less the displacement, and the distal portions showed a sinking displacement (Figure 10). Central loading resulted in the least displacement; buccal and lingual loading showed substantially similar displacements. Compared with the contact model, the fixation model demonstrated less displacement, but aspects of the displacements showed similar tendencies. The results of the ANOVA showed that significant factors for the three-dimensional displacement were assessment site, dental formula, and loading point in both the contact and fixation models (p < 0.05) (Table 5).
Figure 11 shows the equivalent stress distribution for each loading point in the first molar implant section under 100 N of vertical loading. The concentrated site of equivalent stress generated in the artificial mandibular bone in the contact and fixation models was on the buccal side of the bone surrounding the implant neck during buccal loading, the lingual side during lingual loading, and the distal center during central loading. This means that a stress concentration was observed in the bone surrounding the implant neck on the loading side. A minute amount of stress generation was observed at the implant tip and threads as well. The contact model had a larger stress concentration range than the fixation model.
Figure 12, Table 6, and Table 7 show the results for the equivalent stress values of the implants at each loading point under 100 N of vertical loading.
The equivalent stress values of the fixation model were lower at all loading sites than the contact model (Figure 12a). The value was smallest under central loading; buccal loading and lingual loading showed equivalent values. For more distal implants, greater stress values were exhibited. The results of the ANOVA showed that in bone surrounding the implant neck, significant factors for the equivalent stress value were boundary conditions, dental formula, and loading point (p < 0.01) (Table 6). The maximum CV was 16.75% in the contact model and 7.03% in the fixation model (Table 7).
Serial posts:
- Abstract : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Background : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Background : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Methods : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Results : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Discussion : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [5]
- Conclusions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Abbreviations : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [1]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [2]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [3]
- References : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model [4]
- Acknowledgements : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Author information : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Additional information : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Rights and permissions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- About this article : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 1 Mechanical properties of the materials used in the FEA : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 2 Coefficients of variation in implant displacement under loading conditions : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 3 Three-way ANOVA (displacement in the buccolingual direction [x-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 4 Three-way ANOVA (displacement in the mesiodistal direction [y-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 5 Three-way ANOVA (displacement in the inferior-superior direction [z-axis]) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 6 Three-way ANOVA (equivalent stress) : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Table 7 Coefficients of variation for equivalent stresses : A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model
- Figure 1. An artificial mandible. : A biomechanical investigation of mandibular molar implant
- Figure 2. Three implants were embedded in an artificial mandible. : A biomechanical investigation of mandibular molar implant
- Figure 3. An experimental model. (a) Buccal loading, (b) central loading, and (c) lingual loading are shown. : A biomechanical investigation of mandibular molar implant
- Figure 4. An experimental model loading test. : A biomechanical investigation of mandibular molar implant
- Figure 5. An FEA model. (a) Buccal loading, (b) central loading, and (c) lingual loading are shown. : A biomechanical investigation of mandibular molar implant
- Figure 6. Implant displacement under loading conditions. : A biomechanical investigation of mandibular molar implant
- Figure 7. The displacement of the three implants. (M) Mesial side, (D) Distal side, (B) Buccal side, and (L) Lingual side are shown. : A biomechanical investigation of mandibular molar implant
- Figure 8. Displacement in the buccolingual direction (x-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 9. Displacement in the mesiodistal direction (y-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 10. Displacement in the inferior-superior direction (z-axis). (a) The contact model and (b) the fixation model. : A biomechanical investigation of mandibular molar implant
- Figure 11. The distribution of equivalent stress (MPa) around the first molar. : A biomechanical investigation of mandibular molar implant
- Figure 12. Equivalent stresses at (a) the neck and (b) the tip of the implant. : A biomechanical investigation of mandibular molar implant