Discussion : Osseointegration of TI6Al4V dental implants (3)
These results are in agreement with the authors’ previous data and other authors. For example, Calvo-Guirado et al. found topical application of 4 IU of GH like biomimetic agent at the moment of implant placement has no significant effects on the BIC at 5 and 8 weeks, although bone formation and inter-thread bone values did increase significantly. However, controversial about the efficiency of the topical administration of GH is found in the literature. Munoz et al. found that topical application of growth hormone GH and melatonin synergistically enhance new bone formation around titanium implants in early stages of healing.
During the first period of 15 days, the rabbit biokinetics is appropriate to initiate a formation of young bone, which can be confirmed or not, at 30 days. In this animal model, the bone formation can be initiated before 15 days, as has been seen in other studies, but it is very spars. Moreover, the first days guide us towards an evolution of the bone response that is confirmed at 15 days. It has been published in previous works that the fast periosteal response found could be explained by direct action of GH on the pluripotential mesenchymal cells in the first steps of the repair process. The GH accelerated this process in what has been called the “impulse effect” stimulating osteoblasts, chondroblasts, and fibroblasts. However, the most authors have not statistically found a response to GH dependent dose, asseveration that is in accordance with our data.
Systemic and local administration of growth factors accelerates bone regeneration and promotes osteoinductive effects. In fact, the systemic administration of GH has shown to accelerate fracture healing at longer periods of implantation. The beneficial role of GH on the bone regeneration could be achieved at initial local administration of GH in the implantation site where oxidized Ti6Al4V implant is located and after a critical period of implantation time, systemic administration by means of small regular dose, according to.
Conclusions
In summary, oxidation treatments of Ti6Al4V dental implants stimulate a better bone response at longer implantation times. The local application of GH on the implantation site showed no significant effect in the osseointegration process (from BMD and BIC measurements) of thermal and commercial Ti6Al4V dental implants during the first month of implantation.
Serial posts:
- Osseointegration of TI6Al4V dental implants
- Background : Osseointegration of TI6Al4V dental implants
- Methods : Osseointegration of TI6Al4V dental implants (1)
- Methods : Osseointegration of TI6Al4V dental implants (2)
- Methods : Osseointegration of TI6Al4V dental implants (3)
- Methods : Osseointegration of TI6Al4V dental implants (4)
- Methods : Osseointegration of TI6Al4V dental implants (5)
- Results : Osseointegration of TI6Al4V dental implants (1)
- Results : Osseointegration of TI6Al4V dental implants (2)
- Results : Osseointegration of TI6Al4V dental implants (3)
- Discussion : Osseointegration of TI6Al4V dental implants (1)
- Discussion : Osseointegration of TI6Al4V dental implants (2)
- Discussion : Osseointegration of TI6Al4V dental implants (3)
- References : Osseointegration of TI6Al4V dental implants
- Figure 1. Schematic diagram of the classification of experimental animals in groups
- Figure 2. Transcortical osteotomy with Ti6Al4V implant inserted in the tibia bone
- Figure 3. SEM image of the surface of control commercial Ti6Al4V dental implants
- Figure 4. SEM image of the nanoroughness of the oxidized surfaces on control Ti6Al4V dental implants after 700 °C for 1 h
- Figure 6. Bone to implant contact (BIC) values (%) for commercial
- Table 1 Chemical analysis by EDAX of the surface of Ti6Al4V commercial implants
- Table 2 Mean (grammes per square centimetre) and standard deviations
- Table 3 Means and standard deviations of the bone mineral density