Open hour: senin - sabtu 09:00:00 - 20:00:00; minggu & tanggal merah tutup
Threaded commercial titanium alloy implants (3.3 mm diameter and 8 mm length) from Zimmer® were used as control implants.

References : Osseointegration of TI6Al4V dental implants

author: Oscar G Bodeln,Celia Clemente,Miguel Angel Alobera,Soledad Aguado-Henche,Mara Lorenza Escudero, Mara Cristina Garca Alonso | publisher: drg. Andreas Tjandra, Sp. Perio, FISID

References

  1. Lomholt TC, Pantleon K, Somers MAJ. In-vivo degradation mechanism of Ti-6Al-4V hip joints. Mater Sci Eng C. 2011;31:120–7.
  2. Wisbey A, Gregson PJ, Peter LM, et al. Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials. 1991;12:470–3.
  3. Chen G, Wen X, Zhang N. Corrosion resistance and ion dissolution of titanium with different surface microroughness. Biomed Mater Eng. 1998;8:61–74.
  4. Garcia-Alonso MC, Saldana L, Valles G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials. 2003;24:19–26.
  5. Saldaña L, Barranco V, García-Alonso MC, et al. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. J Biomed Mater Res. 2006;77A:220–9.
  6. Saldaña L, Vilaboa N, Vallés G, et al. Osteoblast response to thermally oxidized Ti6Al4V alloy. J Biomed Mater Res. 2005;73A:97–107.
  7. Zhang L, Wu K, Song W, et al. Chitosan/siCkip-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition. Scientific Reports. 2015;5:10860.
  8. Kammerer PW, Lehnert M, Al-Nawas B, et al. Osseoconductivity of a specific streptavidin-biotin-fibronectin surface coating of biotinylated titanium implants - a rabbit animal study. Clin Implant Dent Relat Res. 2015;17 Suppl 2:e601–12.
  9. Germanier Y, Tosatti S, Broggini N, et al. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces A histomorphometric study in miniature pigs. Clin Oral Impl Res. 2006;17:251–7.
  10. Tresguerres IF, Clemente C, Donado M, et al. Local administration of growth hormone enhances periimplant bone reaction in an osteoporotic rabbit model. An histologic, histomorphometric and densitometric study. Clin Oral Impl Res. 2002;13:631–6.
  11. Tresguerres IF, Blanco L, Clemente C, et al. Effects of local administration of growth hormone in periimplant bone: an experimental study with implants in rabbit tibiae. Int J Oral Maxillofac Implants. 2003;18:807–11.
  12. Tresguerres IF, Alobera MA, Baca R, et al. Histologic, morphometric, and densitometric study of peri-implant bone in rabbits with local administration of growth hormone. Int J Oral Maxillofac Implants. 2005;20:193–202.
  13. Lynch S, Buser D, Hernández RA, et al. Effects of the platelet derived growth factor insulin-like growth factor-I combination on bone regeneration around titanium dental implants. Results of a pilot study in beagle dogs. J Periodontol. 1991;62:710–6.
  14. Calvo-Guirado JL, Mate-Sanchez J, Delgado-Ruiz R, et al. Effects of growth hormone on initial bone formation around dental implants: a dog study. Clin Oral Impl Res. 2011;22:587–93.
  15. Oryan A, Alidadi S, MoshirI A, et al. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 2014;40:459–81.
  16. Becker W, Linch SE, Lekholm U, et al. A comparison of e-PTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. Periodontol. 1992;63:929–40.
  17. Bak B, Andreassen TT. The effect of growth hormone on fracture healing in old rats. Bone. 1991;12:151–4.
  18. Andreassen TT, Jorgensen PH, Flyvbjerg A, et al. Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J Bone Miner Res. 1995;10:1057–67.
  19. European Parliament and Council. Council Directive 86/609/EEC of 24 November 1986 on the protection of animals used for experimental and other scientific purposes. Official J Eur Communities. 1986;L358:1–28.
  20. Committee on Animal Nutrition; Board on Agriculture and Renewable Resources; National Research Council. Nutrient Requirements of Rabbit. 2nd rev. ed. Washington DC: National Academic of Sciences; 1977.
  21. Vidigal Jr GM, Groisman M, Gregorio LH, et al. Osseointegration of titanium alloy and HA-coated implants in healthy and ovariectomized animals: a histomorphometric study. Clin Oral Impl Res. 2009;20:1272–7.
  22. Martin-Monge E, Tresguerres IF, Blanco L, et al. Validation of an osteoporotic animal model for dental implant analyses: an in vivo densitometric study in rabbits. Int J Oral Maxillofac Implants. 2011;26:725–30.
  23. Donath K, Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. J Oral Pathol. 1982;11:318–26.
  24. Chappard D, Baslé MF, Legrand E, et al. New laboratory tools in the assessment of bone quality. Osteoporos Int. 2011;22:2225–40.
  25. Barranco V, Escudero ML, Garcia-Alonso MC. 3D, chemical and electrochemical characterization of blasted Ti6Al4V surfaces: Its influence on the corrosion behavior. Electrochim Acta. 2007;52:4374–84.
  26. Diniz MG, Soares GA, Coelho MJ, et al. Surface topography modulates the oeteogenesis in human bone marrow cell cultures grown on titanium samples prepared by a combination of mechanical and acid treatments. J Mater Sci. 2002;13:421–32.
  27. Barranco V, Onofre E, Escudero ML, et al. Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf Coat Tech. 2010;204:3783–93.
  28. Billi F, Onofre E, Ebramzadeh E, et al. Characterization of modified Ti6Al4V alloy after fretting–corrosion tests using near-field microscopy. Surf Coat Tech. 2012;212:134–44.
  29. Webster TJ, Ejiofor JU. Increased osteoblasts adhesion on nanophase metals: Ti. Ti6Al4V and CoCrMo. Biomaterials. 2004;25:4731–9.
  30. Cai KY, Bossert J, Jandt KD. Does the nanometer scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B: Biointerfaces. 2006;49:136–44.
  31. Gittens RA, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-submicron scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–403.
  32. Bernhardt R, Kuhlisch E, Schulz MC, et al. Comparison of bone-implant contact and bone-implant volume between 2d-histological sections and 3D-SR-μCT slices. Eur Cells Mater. 2012;23:237–48.
  33. Cochran DL, Schenk RK, Lussi A, et al. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandibule. J Biomed Mater Res. 1998;40:1–11.
  34. Lutz R, Srour S, Nonhoff J, et al. Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Imp Res. 2010;21:726–34.
  35. Muñoz F, López-Peña M, Miño N, et al. Topical application of melatonin and growth hormone accelerates bone healing around dental implants in dogs. Clin Oral Imp Res. 2012;14:226–35.
  36. Raschke MJ, Bail H, Windhagen HJ, et al. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone. 1999;24:81–8.
  37. Schmidmaier G, Wildemann B, Bail H, et al. Local application of growth factors (insulin-like growth factor-1 and transforming growth factor-β1) from a biodegradable poly(D, L-lactide) coating of osteosynthetic implants accelerates fracture healing in rats. Bone. 2001;28:341–50.
  38. Schmidmaier G, Wildemann B, Heeger J, et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-β1. Bone. 2002;31:165–72.

Serial posts:


id post:
New thoughts
Me:
search
glossary
en in