References : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:638–46.
Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018:1–13.
Hou X, Yuan J, Aisaiti A, Liu Y, Zhao J. The effect of platelet-rich plasma on clinical outcomes of the surgical treatment of periodontal intrabony defects: a systematic review and meta-analysis. BMC Oral Health. 2016;16:71.
Pocaterra A, Caruso S, Bernardi S, Scagnoli L, Continenza MA, Gatto R. Effectiveness of platelet-rich plasma as an adjunctive material to bone graft: a systematic review and meta-analysis of randomized controlled clinical trials. Int J Oral Maxillofac Surg. 2016;45:1027–34.
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther. 2016;16:213–32.
Rosello-Camps A, Monje A, Lin GH, Khoshkam V, Chavez-Gatty M, Wang HL, Gargallo-Albiol J, Hernandez-Alfaro F. Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:562–74.
Jovani-Sancho MD, Sheth CC, Marques-Mateo M, Puche-Torres M. Platelet-rich plasma: a study of the variables that may influence its effect on bone regeneration. Clin Implant Dent Relat Res. 2016;18:1051–64.
De Pascale MR, Sommese L, Casamassimi A, Napoli C. Platelet derivatives in regenerative medicine: an update. Transfus Med Rev. 2015;29:52–61.
Del Fabbro M, Corbella S, Taschieri S, Francetti L, Weinstein R. Autologous platelet concentrate for post-extraction socket healing: a systematic review. Eur J Oral Implantol. 2014;7:333–44.
Kawase T, Okuda K. Comprehensive quality control of the regenerative therapy using platelet concentrates: the current situation and prospects in Japan. Biomed Res Int. 2018; in press
Kitamura Y, Watanabe T, Nakamura M, Isobe K, Kawabata H, Uematsu K, Okuda K, Nakata K, Tanaka T, Kawase T. Platelet counts in insoluble platelet-rich fibrin clots: a direct method for accurate determination. Front Bioeng Biotechnol. 2018;6:4.
Serial posts:
- Abstract : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- Conclusions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Abbreviations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [4]
- Availability of data and materials : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Ethics declarations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Rights and permissions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- About this article : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Fig. 1. A compact SPM with its remote controller installed on an iPad Air. iPhones and other Android devices can be used instead of the iPad Air : Spectrophotometric determination of platelet count
- Fig. 2. The appearance of blood sampled after gravity fractionation and the resulting P-PRP and L-PRP. In the first low-speed spin, samples were centrifuged for 10 min at 533×g. For P-PRP preparation, the upper plasma fraction, which was 2 mm beyond the interface between plasma and RBC fractions, was transferred into sample tubes for the second high-speed spin (2656×g, 5 min). In contrast, for L-PRP preparation, the upper plasma fraction including the buffy coat and the surface of the RBC fraction was used for the second spin. The supernatant (PPP) was excluded by 50–70%, and platelets were resuspended in the remaining PPP fraction : Spectrophotometric determination of platelet count
- Fig. 3. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for calibration curves. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 4. Calibration curves of measured platelet counts versus absorbance in P-PRP and L-PRP preparations. The samples were serially diluted by PPP, and the platelet counts were determined using an AHA and SPM. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 5. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for validation testing. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 6. Scatter plots representing possible correlations between platelet (PLT) and WBC counts and between platelet and RBC counts in P-PRP and L-PRP preparations. Note: strong positive correlations were observed between platelets and RBC in both PRP types. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 7. Scatter plots representing correlations between measured and calculated platelet counts in P-PRP and L-PRP preparations. Note: a strong correlation was observed only in P-PRP. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count