Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
For validation of these calibration curves, P-PRP and L-PRP preparations prepared by three independent operators were employed. Blood cell counts are shown in Fig. 5. As observed in the calibration curves for the samples, significant differences were found in WBC and RBC counts, but not in platelet counts, between the P-PRP and L-PRP preparations. Correlations between platelet counts and WBC or RBC counts are shown in Fig. 6. Unexpectedly, strong positive correlations were observed only between platelet and RBC counts, but not between platelet and WBC counts, in both types of PRP preparations.
Measured versus calculated platelet counts are plotted in Fig. 7. In P-PRP preparations, the ratio of calculated platelet counts to the measured values was 108.6 ± 22.0%, whereas in L-PRP preparations, the ratio was 110.4 ± 64.0%. The discrepancy of SD values was reflected more clearly in the difference of R2 values (0.671 vs. 0.0605).
Serial posts:
- Abstract : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- Conclusions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Abbreviations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [4]
- Availability of data and materials : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Ethics declarations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Rights and permissions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- About this article : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Fig. 1. A compact SPM with its remote controller installed on an iPad Air. iPhones and other Android devices can be used instead of the iPad Air : Spectrophotometric determination of platelet count
- Fig. 2. The appearance of blood sampled after gravity fractionation and the resulting P-PRP and L-PRP. In the first low-speed spin, samples were centrifuged for 10 min at 533×g. For P-PRP preparation, the upper plasma fraction, which was 2 mm beyond the interface between plasma and RBC fractions, was transferred into sample tubes for the second high-speed spin (2656×g, 5 min). In contrast, for L-PRP preparation, the upper plasma fraction including the buffy coat and the surface of the RBC fraction was used for the second spin. The supernatant (PPP) was excluded by 50–70%, and platelets were resuspended in the remaining PPP fraction : Spectrophotometric determination of platelet count
- Fig. 3. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for calibration curves. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 4. Calibration curves of measured platelet counts versus absorbance in P-PRP and L-PRP preparations. The samples were serially diluted by PPP, and the platelet counts were determined using an AHA and SPM. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 5. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for validation testing. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 6. Scatter plots representing possible correlations between platelet (PLT) and WBC counts and between platelet and RBC counts in P-PRP and L-PRP preparations. Note: strong positive correlations were observed between platelets and RBC in both PRP types. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 7. Scatter plots representing correlations between measured and calculated platelet counts in P-PRP and L-PRP preparations. Note: a strong correlation was observed only in P-PRP. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count