Fig. 7. Scatter plots representing correlations between measured and calculated platelet counts in P-PRP and L-PRP preparations. Note: a strong correlation was observed only in P-PRP. N = 32 and 50 for P-PRP and L-PRP, respectively
Fig. 7. Scatter plots representing correlations between measured and calculated platelet counts in P-PRP and L-PRP preparations. Note: a strong correlation was ...
Fig. 6. Scatter plots representing possible correlations between platelet (PLT) and WBC counts and between platelet and RBC counts in P-PRP and L-PRP preparations. Note: strong positive correlations were observed between platelets and RBC in both PRP types. N = 32 and 50 for P-PRP and L-PRP, respectively
Fig. 6. Scatter plots representing possible correlations between platelet (PLT) and WB...
Fig. 5. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for validation testing. N = 32 and 50 for P-PRP and L-PRP, respectively
Fig. 5. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for validation testing. N = 32 and 50 for P-PRP and L-PRP, respectively
Fig. 4. Calibration curves of measured platelet counts versus absorbance in P-PRP and L-PRP preparations. The samples were serially diluted by PPP, and the platelet counts were determined using an AHA and SPM. N = 14 for each type of PRP
Fig. 4. Calibration curves of measured platelet counts versus absorbance in P-PRP and L-PRP preparations. The samples were serially diluted by PPP, and th...
Fig. 3. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for calibration curves. N = 14 for each type of PRP
Fig. 3. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for calibration curves. N = 14 for each type of PRP
Fig. 2. The appearance of blood sampled after gravity fractionation and the resulting P-PRP and L-PRP. In the first low-speed spin, samples were centrifuged for 10 min at 533×g. For P-PRP preparation, the upper plasma fraction, which was 2 mm beyond the interface between plasma and RBC fractions, was transferred into sample tubes for the second high-speed spin (2656×g, 5 min). In contrast, ...
Fig. 1. A compact SPM with its remote controller installed on an iPad Air. iPhones and other Android devices can be used instead of the iPad Air
Fig. 1. A compact SPM with its remote controller installed on an iPad Air. iPhones and other Android devices can be used instead of the iPad Air
Kitamura, Y., Suzuki, M., Tsukioka, T. et al. Spectrophotometric determination of platelet counts in platelet-rich plasma.
Int J Implant Dent 4, 29 (2018). https://doi.org/10.1186/s40729-018-0140-8
Download citation
Received: 13 April 2018
Accepted: 29 June 2018
Published: 02 October 2018
DOI: https://doi.org/10.1186/s40729-018-0140-8
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were m...
The study design and consent forms of all the procedures performed were approved by the ethics committee for human participants of the Niigata University School of Medicine (Niigata, Japan) in accordance with the Helsinki Declaration of 1964 as revised in 2013. Written informed consents to participate in the study were obtained from all the participants.
Written informed consents for the publicat...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
YK, MS, TyTo, and TK conceived and designed the study, performed the experiments and data analysis, and wrote the manuscript. KI, TaTn, ...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Yutaka Kitamura, Masashi Suzuki, Tsuneyuki Tsukioka, Kazushige Isobe, Tetsuhiro Tsujino, Taisuke Watanabe, Takao Watanabe & Hajime Okudera
Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
Koh Nakata
Department of Materials Science and Technology, Niigata University, Niigata, Japan
Tak...
Because an article performed and prepared in parallel is now submitted elsewhere for publication, the authors do not wish to share their data at present time.
Xu Z, Yin W, Zhang Y, Qi X, Chen Y, Xie X, Zhang C. Comparative evaluation of leukocyte- and platelet-rich plasma and pure platelet-rich plasma for cartilage regeneration. Sci Rep. 2017;7:43301.
Yin W, Qi X, Zhang Y, Sheng J, Xu Z, Tao S, Xie X, Li X, Zhang C. Advantages of pure platelet-rich plasma compared with leukocyte- and platelet-rich plasma in promoting repair of bone defects. J Transl Me...
Guder WG, da Fonseca-Wollheim F, Heil W, Schmitt YM, Töpfer G, Wisser H, Zawta B. The Haemolytic, Icteric and Lipemic Sample Recommendations Regarding their Recognition and Prevention of Clinically Relevant Interferences. Recommendations of the Working Group on Preanalytical Variables of the German Society for Clinical Chemistry and the German Society for Laboratory Medicine. LaboratoriumsMedizin...
Hazan R, Que YA, Maura D, Rahme LG. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 2012;12:259.
Lee VS, Tarassenko L. An optical method for the determination of platelet count in platelet samples contaminated with red blood cells. J Biochem Biophys Methods. 1992;24:215–23.
Davis VL, Abukabda AB, Radio NM, Witt-Enderby PA, Clafshenkel...
Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:638–46.
Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018:1–13.
Hou X, Yuan J, Aisaiti A, Liu Y, Zhao J. The effect of platelet-rich plasma on clinical outcomes of t...
Acid-citrate-dextrose solution
Automated hematology analyzer
Leukocyte-rich PRP
Prostaglandin E1
Platelet-poor plasma
Platelet-rich fibrin
Platelet-rich plasma
Pure-PRP
Red blood cell
Standard deviation
Spectrophotometer
Leukocyte
In normal blood samples composed of light yellow plasma, spectrophotometric determination of platelet counts would be useful for quality assurance of individual PRP preparations. For accurate determination, however, operators should handle samples with care to minimize the inclusion of WBCs and RBCs in PRP preparations.
Consistent with the clinical significance of platelet counting, several studies have reported that the platelet concentration is the most reliable criterion for the regenerative ability of PRP [27, 28] because platelets increase the number of anabolic signaling molecules. Conversely, as WBCs increase the number of catabolic signaling molecules, the quality of PRP can, perhaps, be considerably alte...
Another limitation is the color of plasma. In terms of color, blood samples obtained from the donors participating in this study were light yellow and could be evaluated as “normal.” However, we have sometimes encountered colored plasma samples in clinical practice. For example, when blood triglyceride levels are high, the plasma turns milky white or turbid [22,23,24]. Hemolytic plasma looks r...
Since determination of bacterial cell number is a fundamental procedure in the field of microbiology, several methods have been developed and widely employed depending on the purpose of cell counting. SPM is one of the common methods used to estimate bacterial load [12]. The advantage of SPM is speed and convenience without additional preparation steps. On the other hand, the limitations are the i...
For validation of these calibration curves, P-PRP and L-PRP preparations prepared by three independent operators were employed. Blood cell counts are shown in Fig. 5. As observed in the calibration curves for the samples, significant differences were found in WBC and RBC counts, but not in platelet counts, between the P-PRP and L-PRP preparations. Correlations between platelet counts and WBC or R...
The appearance of the blood-collection tube after the first low-speed spin and representative P-PRP and L-PRP preparations after the second high-speed spin and subsequent re-suspension are shown in Fig. 2. Although low-speed spinning did not result in the formation of a clear buffy coat in the interface between the plasma and RBC fractions, the buffy coat corresponding to the plasma was not inclu...
Using the data obtained with both the AHA and SPM, scattered plots were created to examine correlations and obtain formulas to calculate platelet counts.
P-PRP and L-PRP preparations were independently prepared from the 11 donors by three well-trained operators. Platelet counts were first determined using the AHA and aliquots of the PRP preparations were measured using the SPM. Platelet counts we...
Blood samples were collected from 11 non-smoking healthy male volunteers aged 33 to 69 years. The study design and consent forms for all the procedures were approved by the ethics committee for human participants at the Niigata University School of Medicine (Niigata, Japan) in accordance with the Helsinki Declaration of 1964 as revised in 2013.
Peripheral blood (~ 9 mL) was collected into pla...
In this study, we focused on the possibility of spectrophotometric determination and validated the applicability of the proposed method on platelet counts in PRP preparations. This idea was based on bacterial cell counting [12] and a similar challenge was reported in 1992 [13]. However, this optical method has not been further modified for PRP as a grafting material for regenerative therapy in acc...
Almost two decades have passed since platelet concentrates, such as platelet-rich plasma (PRP), were first introduced to the field of regenerative medicine by Marx et al. [1]. To date, PRP has been modified to create different variations and has increasingly been used in various fields of regenerative therapy around the world. However, negative data obtained from clinical applications of PRP have ...
Platelet-rich plasma (PRP) is widely used in regenerative dentistry and other medical fields. However, its effectiveness has often been questioned. For better evaluation, the quality of individual PRP preparations should be assured prior to use. We proposed a spectrophotometric method for determination of platelet counts and validated its applicability using two types of PRP preparations.
Blood s...