Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
The appearance of the blood-collection tube after the first low-speed spin and representative P-PRP and L-PRP preparations after the second high-speed spin and subsequent re-suspension are shown in Fig. 2. Although low-speed spinning did not result in the formation of a clear buffy coat in the interface between the plasma and RBC fractions, the buffy coat corresponding to the plasma was not included in the second spin for P-PRP preparation. Therefore, the resulting P-PRP was light yellow in color, not reddish. In contrast, for the L-PRP preparation, the buffy coat and the surface of the RBC fraction just below the interface were included in the second spin. The inclusion of significant amounts of RBC turned the L-PRP red. The strength of this color was variable depending on the operators’ pipetting skills; however, L-PRP preparations were more or less reddish when the maximum amount of platelets was recovered.
To characterize both the P-PRP and L-PRP preparations used for the calibration curves, blood cells were counted using an AHA (Fig. 3). For platelet counts, there was no significant difference between the two types of PRP. For WBC and RBC counts, in contrast, L-PRP contained significantly more WBCs and RBCs than P-PRP.
The samples were serially diluted, and platelets in individual dilutions were counted using the AHA. In parallel, the absorbance of each sample was measured with the SPM. The resulting calibration curves for P-PRP and L-PRP are shown in Fig. 4. Compared with P-PRP, the calibration curves for L-PRP varied with the samples and appeared generally inappropriate for linear regression. The calibration curve for P-PRP was expressed as “y = 0.00308x − 0.0157,” while that of L-PRP was “y = 0.00852x − 0.638.” The SD values for both the slope and intercept values were much higher in L-PRP. In addition, the R2 value (coefficient of determination) for the linear regression of P-PRP was 0.995, while that of L-PRP was a little lower than that of P-PRP, 0.975, with almost 6.5-times higher SD values.
Serial posts:
- Abstract : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Background : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Methods : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Results : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Discussion : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- Conclusions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Abbreviations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [3]
- References : Spectrophotometric determination of platelet counts in platelet-rich plasma [4]
- Availability of data and materials : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [1]
- Author information : Spectrophotometric determination of platelet counts in platelet-rich plasma [2]
- Ethics declarations : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Rights and permissions : Spectrophotometric determination of platelet counts in platelet-rich plasma
- About this article : Spectrophotometric determination of platelet counts in platelet-rich plasma
- Fig. 1. A compact SPM with its remote controller installed on an iPad Air. iPhones and other Android devices can be used instead of the iPad Air : Spectrophotometric determination of platelet count
- Fig. 2. The appearance of blood sampled after gravity fractionation and the resulting P-PRP and L-PRP. In the first low-speed spin, samples were centrifuged for 10 min at 533×g. For P-PRP preparation, the upper plasma fraction, which was 2 mm beyond the interface between plasma and RBC fractions, was transferred into sample tubes for the second high-speed spin (2656×g, 5 min). In contrast, for L-PRP preparation, the upper plasma fraction including the buffy coat and the surface of the RBC fraction was used for the second spin. The supernatant (PPP) was excluded by 50–70%, and platelets were resuspended in the remaining PPP fraction : Spectrophotometric determination of platelet count
- Fig. 3. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for calibration curves. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 4. Calibration curves of measured platelet counts versus absorbance in P-PRP and L-PRP preparations. The samples were serially diluted by PPP, and the platelet counts were determined using an AHA and SPM. N = 14 for each type of PRP : Spectrophotometric determination of platelet count
- Fig. 5. Counts of platelets (PLT), WBCs, and RBCs in P-PRP and L-PRP preparations prepared for validation testing. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 6. Scatter plots representing possible correlations between platelet (PLT) and WBC counts and between platelet and RBC counts in P-PRP and L-PRP preparations. Note: strong positive correlations were observed between platelets and RBC in both PRP types. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count
- Fig. 7. Scatter plots representing correlations between measured and calculated platelet counts in P-PRP and L-PRP preparations. Note: a strong correlation was observed only in P-PRP. N = 32 and 50 for P-PRP and L-PRP, respectively : Spectrophotometric determination of platelet count