Fig. 4. Effects of PRP, PRGF, A-PRF, and CGF on the proliferation of human periosteal cells. Cells were treated with PRP preparations, PRGF preparations, A-PRF extracts, or CGF extracts at the indicated doses for 48 h in 1 % FBS-containing medium. *P
Fig. 3. Concentrations of the pro-inflammatory cytokines (IL-1β, IL-6) in PRP, PRGF, A-PRF, and CGF preparations (n = 20)
Fig. 3. Concentrations of the pro-inflammatory cytokines (IL-1β, IL-6) in PRP, PRGF, A-PRF, and CGF preparations (n = 20)
Preparation type
Models
Rotor
Radius
(mm)
Rotational speed
...
Masuki, H., Okudera, T., Watanebe, T. et al. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).
Int J Implant Dent 2, 19 (2016). https://doi.org/10.1186/s40729-016-0052-4
Download citation
Received: 21 June 2016
Accepted: 18 Au...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
Correspondence to
Tomoyuki Kawase.
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Hideo Masuki, Toshimitsu Okudera, Taisuke Watanebe, Masashi Suzuki, Kazuhiko Nishiyama & Hajime Okudera
Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
Koh Nakata
Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
Chen-Yao Su
Division of Oral Bioengineering, Instit...
Kobayashi M, Kawase T, Okuda K, Wolff LF, Yoshie H. In vitro immunological and biological evaluations of the angiogenic potential of platelet-rich fibrin preparations: a standardized comparison with PRP preparations. Int J Implant Dent. 2015;1:31.
Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontol 2000. 2015;69:221–54.
Download refer...
Clipet F, Tricot S, Alno N, Massot M, Solhi H, Cathelineau G, Perez F, De Mello G, Pellen-Mussi P. In vitro effects of Choukroun’s platelet-rich fibrin conditioned medium on 3 different cell lines implicated in dental implantology. Implant Dent. 2012;21:51–6.
Gassling VL, Acil Y, Springer IN, Hubert N, Wiltfang J. Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg ...
Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology. 2015;103:126–35.
Anitua E. The use of plasma-rich growth factors (PRGF) in oral surgery. Pract Proced Aesthet Dent. 2001;13:487–93.
Choukroun J. Advanced PRF, &i-PRF: platelet concentrates or blood concentrates? J...
Acid citrate dextrose solution
Analysis of variance
Advanced platelet-rich fibrin
A-PRF extract
Concentrated growth factors
CGF extract
Enzyme-linked immunosorbent assay
Interleukin-1β
Interleukin-6
Platelet-derived growth factor-BB
Platelet
Plasma rich in growth factors
Platelet-rich plasma
Red blood cell
Transforming growth factor-β1
Vascular endothelial growth factor
White blo...
The present study clearly demonstrated that both A-PRF and CGF preparations contained significant amounts of growth factors, which makes us to believe that A-PRF and CGF preparations would not only function as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application. Accordingly, it is expected that these two preparations are more potently capable...
In the previous study [12], we found that PRP and A-PRF preparations exert distinguishable actions on periosteal cell proliferation. Because both IL-1β and IL-6 are known to be produced by WBCs [23], and because WBCs are not included in PRGF preparations, we thought that the bi-phasic effects of PRP preparations may be attributed to WBCs. Furthermore, if WBCs are highly concentrated in A-PRF, it ...
Although the growth factor contents in PRF and CGF preparations and their bioactivities have been demonstrated in in vitro studies by several independent groups [8–11, 13–20], many clinicians still believe that the regenerative effects of PRF/CGF are solely due to fibrin clots. We speculate that this discrepancy may be caused by two major factors. First, the initial report on PRF by Choukroun ...
Numbers of platelets in PRP and PRGF preparations are shown in Fig. 1 (upper panel). Platelets were significantly concentrated both in the PRP and PRGF preparations, and the concentration rate of PRP preparations was substantially higher than that of PRGF preparations (8.79-fold vs. 2.84-fold). Numbers of platelets in A-PRF and CGF preparations calculated by the indirect subtraction method are al...
Because alveolar periosteum is closely contributed to periodontal skeletal tissue regeneration, we used human alveolar bone-derived periosteal cells for evaluation of efficacy of the PRP derivatives. The periosteal cells were obtained and expanded as described below. With informed consent, human periosteum tissue segments were aseptically dissected from the periodontal tissues of the healthy bucca...
As described previously [7, 9], blood samples (~9.5 mL) collected without anticoagulants using vacuum plain glass tubes (A-PRF+: Jiangxi Fenglin Medical Technology Co. Ltd, Fengcheng, China) or conventional vacuum plain glass tube (Plain BD Vacutainer Tube; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) from the same donors were immediately centrifuged by an A-PRF centrifugation system (...
Based on their characteristics and fractionation, the differences among PRP and PRP derivatives are concisely described in our previous article [1].
As previously described [5, 6], blood samples (11.5 mL) were collected using syringes or vacuum blood collection tubes equipped with 18G needles from seven non-smoking, healthy, middle-aged, male volunteers (37 to 68 years old) three times with a 2...
Platelet-rich plasma (PRP) was originally demonstrated to be effective in the operation of alveolar ridge augmentation and immediately spread to the fields of periodontal and oral maxillofacial surgery [1]. This clinical application was endorsed by evidence that several major growth factors are contained at high levels in PRP preparations. However, for some reasons, such as low handling efficiency...
The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF’s clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated ...
Fig. 3. Enzymatic degradability of A-PRF, CGF, and PPTF membranes. Each membrane disk (φ8 mm, 1 mm thick) was immersed in PBS containing trypsin and incubated in a CO2 incubator. N = 4. The asterisks represent significant differences (P
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N = 3–9
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N...
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots prepared by PPP + CaCl2 and PPTF (fibrin clots prepared by PPP and thrombin). Similar observations were obtained from other three independent blood samples. Scale bar = 10 μm. Note: the same magnification (×9000) was used in all the SEM images shown here
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots p...
A-PRF
CGF
PPTF
Centrifugal conditions
198 g × 8 min
692 g × 2 mina
...
Wet weight (g)
Dry weight (g)
Water content (%)
A-PRF
1.905 ± 0.416
0.043 ± 0.014*
...
Size (W × L mm)
Stretching (times longer)
Number
A-PRF
8.6 ± 1.2 × 27.5 ± 3.5
...
Isobe, K., Watanebe, T., Kawabata, H. et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF).
Int J Implant Dent 3, 17 (2017). https://doi.org/10.1186/s40729-017-0081-7
Download citation
Received: 29 January 2017
Accepted: 25 April 2017
Published: 02 May 2017
...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
Correspondence to
Tomoyuki Kawa...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Taisuke Watanebe, Hideo Kawabata, Yutaka Kitamura, Toshimitsu Okudera & Hajime Okudera
Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
Kazuhiro Okuda
Bioscie...
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.
Kawase T, Kamiya M, Kobayashi M, Tanaka T, Okuda K, Wolff LF, Yoshie H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater. 2015;103:825–31.
Hartshorne J, Gluckman H. A...
Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303.
Kawase T. Platelet-rich plasma and its derivatives as promising bioac...
Acid citrate dextrose solution
Advanced platelet-rich fibrin
Concentrated growth factors
Platelet-poor plasma-derived, thrombin-activated fibrin
Platelet-rich plasma
In the mechanical parameters and degradability we tested, CGF membranes were almost identical to A-PRF membranes. In contrast, PPTF membranes were mechanically weaker and highly degradable. Therefore, we conclude that all of these fibrin membranes are tough enough to serve as barrier membranes; however, we should pay attention to their degradability and choose an appropriate membrane type dependin...
Growth factor release is a key function of these fibrin clots for tissue regeneration. Our previous study [16] demonstrated that CGF membranes compressed by the stainless steel compression device contain significantly higher levels of growth factors even after releasing approximately 85% of exudate. Repeated rinsing with PBS failed to completely remove the growth factors from CGF membranes. The ri...
In this study, we found no apparent differences between A-PRF and CGF clot microstructures, especially in fibrin fiber thickness or crosslink density. However, in PPTF clots, which were prepared through direct conversion of fibrinogen by thrombin, fibrin fiber thickness and their crosslink density were substantially thinner and higher, respectively, than those of either A-PTF or CGF clots. This fi...
The main purpose of this study was to compare A-PRF with CGF preparations to find possible differences in mechanical properties. As shown in Table 1, the sizes of A-PRF clots compressed to membranes were 8.6 ± 1.2 mm (W) × 27.5 ± 3.5 mm (L) and very similar to those of CGF clots (8.4 ± 0.8 mm × 27.6 ± 2.5 mm). As reference, PPTF membranes were also prepared by ad...
After pipetting the digestion solution, 50 μL of the digestion solution was collected every 20 min and was stored at −20 °C until protein measurement. Protein levels, which can be considered primarily as levels of digested fibrin fiber, were then determined by a BCA protein assay kit (Takara Bio, Kusatsu, Japan). The protein levels at the time point when the initial fibrin disks were comple...
The mechanical properties of gel sheets were measured at a stretching speed of 1 mm/min with a desktop universal testing machine (EZ test; Shimadzu, Kyoto, Japan), of which maximum load cell capacity was 500 N under standard ambient conditions at 25 ± 3 °C and 50 ± 25% RH. The samples were gripped by clamps at each end (using slip-proof rubber sheets to prevent slippage) such that th...
Blood samples were collected from four non-smoking, healthy, male volunteers with ages ranging from 27 to 56 years. Although having lifestyle-related diseases and receiving medication, these donors had no hindrance in daily life. The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subjects at Niigata University S...
In this study, we hypothesized that the mechanical properties of the fibrin membrane are closely related to its degradability. We compared these characteristics among A-PRF, CGF, and PPTF membranes through tensile and digestion tests.
Platelet-rich fibrin (PRF), a self-clotted preparation of platelet-concentrated, blood-derived biomaterials, is prepared solely by contact activation of intrinsic coagulation pathways through centrifugation without addition of coagulation factors [1, 2]. Therefore, the preparation protocol is drastically simplified, and the resulting clot can be handled easily with forceps. PRF is further modified...
Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released. However, the mechanical and degradable properties of these membran...
Fig. 3. Enzymatic degradability of A-PRF, CGF, and PPTF membranes. Each membrane disk (φ8 mm, 1 mm thick) was immersed in PBS containing trypsin and incubated in a CO2 incubator. N = 4. The asterisks represent significant differences (P
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N = 3–9
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N...
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots prepared by PPP + CaCl2 and PPTF (fibrin clots prepared by PPP and thrombin). Similar observations were obtained from other three independent blood samples. Scale bar = 10 μm. Note: the same magnification (×9000) was used in all the SEM images shown here
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots p...
A-PRF
CGF
PPTF
Centrifugal conditions
198 g × 8 min
692 g × 2 mina
...
Wet weight (g)
Dry weight (g)
Water content (%)
A-PRF
1.905 ± 0.416
0.043 ± 0.014*
...
Size (W × L mm)
Stretching (times longer)
Number
A-PRF
8.6 ± 1.2 × 27.5 ± 3.5
...
Isobe, K., Watanebe, T., Kawabata, H. et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF).
Int J Implant Dent 3, 17 (2017). https://doi.org/10.1186/s40729-017-0081-7
Download citation
Received: 29 January 2017
Accepted: 25 April 2017
Published: 02 May 2017
...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
Correspondence to
Tomoyuki Kawa...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Taisuke Watanebe, Hideo Kawabata, Yutaka Kitamura, Toshimitsu Okudera & Hajime Okudera
Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
Kazuhiro Okuda
Bioscie...
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.
Kawase T, Kamiya M, Kobayashi M, Tanaka T, Okuda K, Wolff LF, Yoshie H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater. 2015;103:825–31.
Hartshorne J, Gluckman H. A...
Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303.
Kawase T. Platelet-rich plasma and its derivatives as promising bioac...
Acid citrate dextrose solution
Advanced platelet-rich fibrin
Concentrated growth factors
Platelet-poor plasma-derived, thrombin-activated fibrin
Platelet-rich plasma
In the mechanical parameters and degradability we tested, CGF membranes were almost identical to A-PRF membranes. In contrast, PPTF membranes were mechanically weaker and highly degradable. Therefore, we conclude that all of these fibrin membranes are tough enough to serve as barrier membranes; however, we should pay attention to their degradability and choose an appropriate membrane type dependin...
Growth factor release is a key function of these fibrin clots for tissue regeneration. Our previous study [16] demonstrated that CGF membranes compressed by the stainless steel compression device contain significantly higher levels of growth factors even after releasing approximately 85% of exudate. Repeated rinsing with PBS failed to completely remove the growth factors from CGF membranes. The ri...
In this study, we found no apparent differences between A-PRF and CGF clot microstructures, especially in fibrin fiber thickness or crosslink density. However, in PPTF clots, which were prepared through direct conversion of fibrinogen by thrombin, fibrin fiber thickness and their crosslink density were substantially thinner and higher, respectively, than those of either A-PTF or CGF clots. This fi...
The main purpose of this study was to compare A-PRF with CGF preparations to find possible differences in mechanical properties. As shown in Table 1, the sizes of A-PRF clots compressed to membranes were 8.6 ± 1.2 mm (W) × 27.5 ± 3.5 mm (L) and very similar to those of CGF clots (8.4 ± 0.8 mm × 27.6 ± 2.5 mm). As reference, PPTF membranes were also prepared by ad...
After pipetting the digestion solution, 50 μL of the digestion solution was collected every 20 min and was stored at −20 °C until protein measurement. Protein levels, which can be considered primarily as levels of digested fibrin fiber, were then determined by a BCA protein assay kit (Takara Bio, Kusatsu, Japan). The protein levels at the time point when the initial fibrin disks were comple...
The mechanical properties of gel sheets were measured at a stretching speed of 1 mm/min with a desktop universal testing machine (EZ test; Shimadzu, Kyoto, Japan), of which maximum load cell capacity was 500 N under standard ambient conditions at 25 ± 3 °C and 50 ± 25% RH. The samples were gripped by clamps at each end (using slip-proof rubber sheets to prevent slippage) such that th...
Blood samples were collected from four non-smoking, healthy, male volunteers with ages ranging from 27 to 56 years. Although having lifestyle-related diseases and receiving medication, these donors had no hindrance in daily life. The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subjects at Niigata University S...
In this study, we hypothesized that the mechanical properties of the fibrin membrane are closely related to its degradability. We compared these characteristics among A-PRF, CGF, and PPTF membranes through tensile and digestion tests.
Platelet-rich fibrin (PRF), a self-clotted preparation of platelet-concentrated, blood-derived biomaterials, is prepared solely by contact activation of intrinsic coagulation pathways through centrifugation without addition of coagulation factors [1, 2]. Therefore, the preparation protocol is drastically simplified, and the resulting clot can be handled easily with forceps. PRF is further modified...
Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released. However, the mechanical and degradable properties of these membran...