Fig. 4. Bioactivities and PDGF-BB concentrations in PRF extracts and the supernatant serum fraction. a PRF extracts were added to periosteal cell cultures and incubated for 3 days to evaluate their effects on cell proliferation. No significant differences were observed among three groups. b PRF extracts were subjected to measurement of PDGF-BB levels using an ELISA kit. No significant differenc...
Fig. 3. SEM examination of fibrin fibers formed in self-clotted PRF and thrombin-stimulated PPP clots. PRF was prepared from fresh and 2-day-old WB samples. Similar observations were obtained from WB samples collected from three other donors. Scale bars = 10 μm
Fig. 3. SEM examination of fibrin fibers formed in self-clotted PRF and thrombin-stimulated PPP clots. PRF was prepared from fresh ...
Fig. 2. Appearance of PRF clots prepared from WB samples stored for 2 days. These observations are representative of WB samples obtained from four donors
Fig. 2. Appearance of PRF clots prepared from WB samples stored for 2 days. These observations are representative of WB samples obtained from four donors
Fig. 1. Glucose levels (a), calcium levels (b), and pH (c) of stored WB samples. Supernatant serum fractions were examined. Plasma fractions prepared by quick centrifugation were used to determine calcium levels in fresh and stored WB samples that were not added CaCl2. N = 6
Fig. 1. Glucose levels (a), calcium levels (b), and pH (c) of stored WB samples. Supernatant serum fractions were...
Isobe, K., Suzuki, M., Watanabe, T. et al. Platelet-rich fibrin prepared from stored whole-blood samples. Int J Implant Dent 3, 6 (2017). https://doi.org/10.1186/s40729-017-0068-4
Download citation
Received: 21 December 2016
Accepted: 15 February 2017
Published: 01 March 2017
DOI: https://doi.org/10.1186/s40729-017-0068-4
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
Correspondence to Tomo...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Masashi Suzuki, Taisuke Watanabe, Yutaka Kitamura, Taiji Suzuki, Hideo Kawabata, Masayuki Nakamura, Toshimitsu Okudera & Hajime Okudera
Division of Oral Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Bioscience Medical Research Center, Niigata University Medical and Dental ...
Duan X, Bradbury SR, Olsen BR, Berendsen AD. Matrix Biol. 2016;52-54:127–40.
Kawase T, Okuda K, Kogami H, Nakayama H, Nagata M, Nakata K, Yoshie H. Characterization of human cultured periosteal sheets expressing bone-forming potential: in vitro and in vivo animal studies. J Tissue Eng Regen Med. 2009;3:218–29.
Kawase T, Hayama K, Tsuchimochi M, Nagata M, Okuda K, Yoshie H, Burns DM, Nakata K...
Hess J. Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood Transfus. 2010;8 Suppl 3:s9–s15.
World Health Organization. Manual on the management, maintenance and use of blood cold chain equipment. http://www.who.int/bloodsafety/Manual_on_Management,Maintenance_and_Use_of_Blood_Cold_Chain_Equipment.pdf. Accessed 26 Nov 2016.
van der Meer PF, d...
Acid citrate dextrose solution
Concentrated growth factors
Citrate phosphate and dextrose
Ethylenediaminetetraacetic acid
Platelet-derived growth factor
Platelet-poor plasma
Platelet-rich fibrin
Platelet-rich plasma
Scanning electron microscope
Whole blood
The self-clotted types of platelet concentrates (PRF) can be prepared from ACD-containing stored WB by addition of CaCl2 without a significant reduction in their bioactivity and without other specific reagents or devices. This approach should contribute to dissemination of PRF therapy.
Considering the current status of clinical use of platelet concentrates in the fields of periodontology and oral surgery, in this study, we used 10-mL glass tubes that are not oxygen-permeable instead of oxygen-permeable plastic bags for storage of large volumes of WB or platelets. We advanced a working hypothesis that the storage of WB samples in glass tubes would result in a more rapid and subst...
Platelet preservation is restricted to 3 and 5 days in Japan and worldwide, respectively. This limit is based on the fact that platelets are sensitive to changes in temperature and pH: when samples are stored at 2 to 6 °C, platelets become unsuitable for production of platelet concentrates [3]. Preservation of platelet concentrates results in a drop of pH below 6.0 depending on the platelet cou...
Glucose and calcium contents and pH of WB or serum samples after centrifugation are shown in Fig. 1. Because glucose is contained in the ACD-A solution, glucose levels in the stored WB and serum samples (see Fig. 4c) after centrifugation were significantly greater than those of freshly collected WB samples. Total free calcium levels, including calcium chelated by citrate, in WB samples decreased...
PRF extracts prepared as described above were subjected to measurement of PDGF-BB levels using the Human PDGF-BB Quantikine ELISA Kit (R&D Systems, Inc., Minneapolis, MN, USA) as described previously [8].
The PRF clots that were compressed in a stainless-steel compressor were fixed with 2.5% neutralized glutaraldehyde, dehydrated with a series of ethanol solutions and t-butanol, freeze-dried, and...
Stored WB samples were then mixed intermittently with 200 μL (20 μL × 10 times) of 10% CaCl2 solution and centrifuged by a Medifuge centrifugation system to prepare PRF. When lower amounts of CaCl2 were added, PRF clots were less reproducibly prepared. When higher amounts of CaCl2 were added intermittently, or when the optimal amount of CaCl2 were added at once, PRF clots were never prepa...
The study design and consent forms for all procedures performed on the study subjects were approved by the ethics committee for human subjects at Niigata University School of Medicine in accordance with the Helsinki Declaration of 1975 as revised in 2008.
With informed consent, blood samples (~9.0 mL per tube) were collected from six non-smoking, healthy, male volunteers (27 to 67 years old) us...
Blood preservation is generally and widely used in the fields of blood transfusion and surgery for either autologous or allogeneic blood [1–3]. In case of small lots of blood-derived materials used in regenerative therapy, such as platelet concentrates, it is generally accepted that autologous blood samples should be collected on-site and immediately centrifuged for processing [4]. Accordingly, ...
In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics.
Blood samples were collected ...
Fig. 3. Enzymatic degradability of A-PRF, CGF, and PPTF membranes. Each membrane disk (φ8 mm, 1 mm thick) was immersed in PBS containing trypsin and incubated in a CO2 incubator. N = 4. The asterisks represent significant differences (P
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N = 3–9
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N...
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots prepared by PPP + CaCl2 and PPTF (fibrin clots prepared by PPP and thrombin). Similar observations were obtained from other three independent blood samples. Scale bar = 10 μm. Note: the same magnification (×9000) was used in all the SEM images shown here
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots p...
A-PRF
CGF
PPTF
Centrifugal conditions
198 g × 8 min
692 g × 2 mina
...
Wet weight (g)
Dry weight (g)
Water content (%)
A-PRF
1.905 ± 0.416
0.043 ± 0.014*
...
Size (W × L mm)
Stretching (times longer)
Number
A-PRF
8.6 ± 1.2 × 27.5 ± 3.5
...
Isobe, K., Watanebe, T., Kawabata, H. et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF).
Int J Implant Dent 3, 17 (2017). https://doi.org/10.1186/s40729-017-0081-7
Download citation
Received: 29 January 2017
Accepted: 25 April 2017
Published: 02 May 2017
...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
Correspondence to
Tomoyuki Kawa...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Taisuke Watanebe, Hideo Kawabata, Yutaka Kitamura, Toshimitsu Okudera & Hajime Okudera
Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
Kazuhiro Okuda
Bioscie...
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.
Kawase T, Kamiya M, Kobayashi M, Tanaka T, Okuda K, Wolff LF, Yoshie H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater. 2015;103:825–31.
Hartshorne J, Gluckman H. A...
Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303.
Kawase T. Platelet-rich plasma and its derivatives as promising bioac...
Acid citrate dextrose solution
Advanced platelet-rich fibrin
Concentrated growth factors
Platelet-poor plasma-derived, thrombin-activated fibrin
Platelet-rich plasma
In the mechanical parameters and degradability we tested, CGF membranes were almost identical to A-PRF membranes. In contrast, PPTF membranes were mechanically weaker and highly degradable. Therefore, we conclude that all of these fibrin membranes are tough enough to serve as barrier membranes; however, we should pay attention to their degradability and choose an appropriate membrane type dependin...
Growth factor release is a key function of these fibrin clots for tissue regeneration. Our previous study [16] demonstrated that CGF membranes compressed by the stainless steel compression device contain significantly higher levels of growth factors even after releasing approximately 85% of exudate. Repeated rinsing with PBS failed to completely remove the growth factors from CGF membranes. The ri...
In this study, we found no apparent differences between A-PRF and CGF clot microstructures, especially in fibrin fiber thickness or crosslink density. However, in PPTF clots, which were prepared through direct conversion of fibrinogen by thrombin, fibrin fiber thickness and their crosslink density were substantially thinner and higher, respectively, than those of either A-PTF or CGF clots. This fi...
The main purpose of this study was to compare A-PRF with CGF preparations to find possible differences in mechanical properties. As shown in Table 1, the sizes of A-PRF clots compressed to membranes were 8.6 ± 1.2 mm (W) × 27.5 ± 3.5 mm (L) and very similar to those of CGF clots (8.4 ± 0.8 mm × 27.6 ± 2.5 mm). As reference, PPTF membranes were also prepared by ad...
After pipetting the digestion solution, 50 μL of the digestion solution was collected every 20 min and was stored at −20 °C until protein measurement. Protein levels, which can be considered primarily as levels of digested fibrin fiber, were then determined by a BCA protein assay kit (Takara Bio, Kusatsu, Japan). The protein levels at the time point when the initial fibrin disks were comple...
The mechanical properties of gel sheets were measured at a stretching speed of 1 mm/min with a desktop universal testing machine (EZ test; Shimadzu, Kyoto, Japan), of which maximum load cell capacity was 500 N under standard ambient conditions at 25 ± 3 °C and 50 ± 25% RH. The samples were gripped by clamps at each end (using slip-proof rubber sheets to prevent slippage) such that th...
Blood samples were collected from four non-smoking, healthy, male volunteers with ages ranging from 27 to 56 years. Although having lifestyle-related diseases and receiving medication, these donors had no hindrance in daily life. The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subjects at Niigata University S...
In this study, we hypothesized that the mechanical properties of the fibrin membrane are closely related to its degradability. We compared these characteristics among A-PRF, CGF, and PPTF membranes through tensile and digestion tests.
Platelet-rich fibrin (PRF), a self-clotted preparation of platelet-concentrated, blood-derived biomaterials, is prepared solely by contact activation of intrinsic coagulation pathways through centrifugation without addition of coagulation factors [1, 2]. Therefore, the preparation protocol is drastically simplified, and the resulting clot can be handled easily with forceps. PRF is further modified...
Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released. However, the mechanical and degradable properties of these membran...
Isobe, K., Suzuki, M., Watanabe, T. et al. Platelet-rich fibrin prepared from stored whole-blood samples.
Int J Implant Dent 3, 6 (2017). https://doi.org/10.1186/s40729-017-0068-4
Download citation
Received: 21 December 2016
Accepted: 15 February 2017
Published: 01 March 2017
DOI: https://doi.org/10.1186/s40729-017-0068-4
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Masashi Suzuki, Taisuke Watanabe, Yutaka Kitamura, Taiji Suzuki, Hideo Kawabata, Masayuki Nakamura, Toshimitsu Okudera & Hajime Okudera
Division of Oral Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Bioscience Medical Research Center, Niigata University Medical and Dental ...
Duan X, Bradbury SR, Olsen BR, Berendsen AD. Matrix Biol. 2016;52-54:127–40.
Kawase T, Okuda K, Kogami H, Nakayama H, Nagata M, Nakata K, Yoshie H. Characterization of human cultured periosteal sheets expressing bone-forming potential: in vitro and in vivo animal studies. J Tissue Eng Regen Med. 2009;3:218–29.
Kawase T, Hayama K, Tsuchimochi M, Nagata M, Okuda K, Yoshie H, Burns DM, Nakata K...
Hess J. Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood Transfus. 2010;8 Suppl 3:s9–s15.
World Health Organization. Manual on the management, maintenance and use of blood cold chain equipment. http://www.who.int/bloodsafety/Manual_on_Management,Maintenance_and_Use_of_Blood_Cold_Chain_Equipment.pdf. Accessed 26 Nov 2016.
van der Meer PF, d...
Acid citrate dextrose solution
Concentrated growth factors
Citrate phosphate and dextrose
Ethylenediaminetetraacetic acid
Platelet-derived growth factor
Platelet-poor plasma
Platelet-rich fibrin
Platelet-rich plasma
Scanning electron microscope
Whole blood
The self-clotted types of platelet concentrates (PRF) can be prepared from ACD-containing stored WB by addition of CaCl2 without a significant reduction in their bioactivity and without other specific reagents or devices. This approach should contribute to dissemination of PRF therapy.
Considering the current status of clinical use of platelet concentrates in the fields of periodontology and oral surgery, in this study, we used 10-mL glass tubes that are not oxygen-permeable instead of oxygen-permeable plastic bags for storage of large volumes of WB or platelets. We advanced a working hypothesis that the storage of WB samples in glass tubes would result in a more rapid and subst...
Platelet preservation is restricted to 3 and 5 days in Japan and worldwide, respectively. This limit is based on the fact that platelets are sensitive to changes in temperature and pH: when samples are stored at 2 to 6 °C, platelets become unsuitable for production of platelet concentrates [3]. Preservation of platelet concentrates results in a drop of pH below 6.0 depending on the platelet cou...
Glucose and calcium contents and pH of WB or serum samples after centrifugation are shown in Fig. 1. Because glucose is contained in the ACD-A solution, glucose levels in the stored WB and serum samples (see Fig. 4c) after centrifugation were significantly greater than those of freshly collected WB samples. Total free calcium levels, including calcium chelated by citrate, in WB samples decreased...
PRF extracts prepared as described above were subjected to measurement of PDGF-BB levels using the Human PDGF-BB Quantikine ELISA Kit (R&D Systems, Inc., Minneapolis, MN, USA) as described previously [8].
The PRF clots that were compressed in a stainless-steel compressor were fixed with 2.5% neutralized glutaraldehyde, dehydrated with a series of ethanol solutions and t-butanol, freeze-dried, and...
Stored WB samples were then mixed intermittently with 200 μL (20 μL × 10 times) of 10% CaCl2 solution and centrifuged by a Medifuge centrifugation system to prepare PRF. When lower amounts of CaCl2 were added, PRF clots were less reproducibly prepared. When higher amounts of CaCl2 were added intermittently, or when the optimal amount of CaCl2 were added at once, PRF clots were never prepa...
The study design and consent forms for all procedures performed on the study subjects were approved by the ethics committee for human subjects at Niigata University School of Medicine in accordance with the Helsinki Declaration of 1975 as revised in 2008.
With informed consent, blood samples (~9.0 mL per tube) were collected from six non-smoking, healthy, male volunteers (27 to 67 years old) us...
Blood preservation is generally and widely used in the fields of blood transfusion and surgery for either autologous or allogeneic blood [1–3]. In case of small lots of blood-derived materials used in regenerative therapy, such as platelet concentrates, it is generally accepted that autologous blood samples should be collected on-site and immediately centrifuged for processing [4]. Accordingly, ...
In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics.
Blood samples were collected ...
Fig. 3. Enzymatic degradability of A-PRF, CGF, and PPTF membranes. Each membrane disk (φ8 mm, 1 mm thick) was immersed in PBS containing trypsin and incubated in a CO2 incubator. N = 4. The asterisks represent significant differences (P
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N = 3–9
Fig. 2. Representative stress-strain curves for A-PRF and CGF membranes and mechanical properties (Young’s modulus, strain at break, and maximum stress) of A-PRF, CGF, and PPTF membranes. N...
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots prepared by PPP + CaCl2 and PPTF (fibrin clots prepared by PPP and thrombin). Similar observations were obtained from other three independent blood samples. Scale bar = 10 μm. Note: the same magnification (×9000) was used in all the SEM images shown here
Fig. 1. Surface microstructures of A-PRF, CGF, and fibrin clots p...
A-PRF
CGF
PPTF
Centrifugal conditions
198 g × 8 min
692 g × 2 mina
...
Wet weight (g)
Dry weight (g)
Water content (%)
A-PRF
1.905 ± 0.416
0.043 ± 0.014*
...
Size (W × L mm)
Stretching (times longer)
Number
A-PRF
8.6 ± 1.2 × 27.5 ± 3.5
...
Isobe, K., Watanebe, T., Kawabata, H. et al. Mechanical and degradation properties of advanced platelet-rich fibrin (A-PRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF).
Int J Implant Dent 3, 17 (2017). https://doi.org/10.1186/s40729-017-0081-7
Download citation
Received: 29 January 2017
Accepted: 25 April 2017
Published: 02 May 2017
...
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were...
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
You can also search for this author in
PubMed Google Scholar
Correspondence to
Tomoyuki Kawa...
Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
Kazushige Isobe, Taisuke Watanebe, Hideo Kawabata, Yutaka Kitamura, Toshimitsu Okudera & Hajime Okudera
Division of Dental Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
Kohya Uematsu
Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
Kazuhiro Okuda
Bioscie...
Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3:1894–904.
Kawase T, Kamiya M, Kobayashi M, Tanaka T, Okuda K, Wolff LF, Yoshie H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater. 2015;103:825–31.
Hartshorne J, Gluckman H. A...
Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJ, Mouhyi J, Dohan DM. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303.
Kawase T. Platelet-rich plasma and its derivatives as promising bioac...
Acid citrate dextrose solution
Advanced platelet-rich fibrin
Concentrated growth factors
Platelet-poor plasma-derived, thrombin-activated fibrin
Platelet-rich plasma
In the mechanical parameters and degradability we tested, CGF membranes were almost identical to A-PRF membranes. In contrast, PPTF membranes were mechanically weaker and highly degradable. Therefore, we conclude that all of these fibrin membranes are tough enough to serve as barrier membranes; however, we should pay attention to their degradability and choose an appropriate membrane type dependin...
Growth factor release is a key function of these fibrin clots for tissue regeneration. Our previous study [16] demonstrated that CGF membranes compressed by the stainless steel compression device contain significantly higher levels of growth factors even after releasing approximately 85% of exudate. Repeated rinsing with PBS failed to completely remove the growth factors from CGF membranes. The ri...
In this study, we found no apparent differences between A-PRF and CGF clot microstructures, especially in fibrin fiber thickness or crosslink density. However, in PPTF clots, which were prepared through direct conversion of fibrinogen by thrombin, fibrin fiber thickness and their crosslink density were substantially thinner and higher, respectively, than those of either A-PTF or CGF clots. This fi...
The main purpose of this study was to compare A-PRF with CGF preparations to find possible differences in mechanical properties. As shown in Table 1, the sizes of A-PRF clots compressed to membranes were 8.6 ± 1.2 mm (W) × 27.5 ± 3.5 mm (L) and very similar to those of CGF clots (8.4 ± 0.8 mm × 27.6 ± 2.5 mm). As reference, PPTF membranes were also prepared by ad...
After pipetting the digestion solution, 50 μL of the digestion solution was collected every 20 min and was stored at −20 °C until protein measurement. Protein levels, which can be considered primarily as levels of digested fibrin fiber, were then determined by a BCA protein assay kit (Takara Bio, Kusatsu, Japan). The protein levels at the time point when the initial fibrin disks were comple...
The mechanical properties of gel sheets were measured at a stretching speed of 1 mm/min with a desktop universal testing machine (EZ test; Shimadzu, Kyoto, Japan), of which maximum load cell capacity was 500 N under standard ambient conditions at 25 ± 3 °C and 50 ± 25% RH. The samples were gripped by clamps at each end (using slip-proof rubber sheets to prevent slippage) such that th...
Blood samples were collected from four non-smoking, healthy, male volunteers with ages ranging from 27 to 56 years. Although having lifestyle-related diseases and receiving medication, these donors had no hindrance in daily life. The study design and consent forms for all procedures performed with the study subjects were approved by the ethical committee for human subjects at Niigata University S...
In this study, we hypothesized that the mechanical properties of the fibrin membrane are closely related to its degradability. We compared these characteristics among A-PRF, CGF, and PPTF membranes through tensile and digestion tests.
Platelet-rich fibrin (PRF), a self-clotted preparation of platelet-concentrated, blood-derived biomaterials, is prepared solely by contact activation of intrinsic coagulation pathways through centrifugation without addition of coagulation factors [1, 2]. Therefore, the preparation protocol is drastically simplified, and the resulting clot can be handled easily with forceps. PRF is further modified...
Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released. However, the mechanical and degradable properties of these membran...