Conclusions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
Conclusions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
author: Mai Ahmed Yousry El-Sheikh, Tamer Mohamed Nasr Mostafa, Mohamed Maamoun El-Sheikh | publisher: drg. Andreas Tjandra, Sp. Perio, FISID
Within the limitations of this in vitro study, it can be concluded that:
Screw loosening increases with increasing abutment angulation and collar length after 100,000 cycles of dynamic cyclic loading.
Results of this study showed that conical hybrid connection design provides more biomechanically stable screw joint with straight abutments than angled abutments.
Serial posts:
- Abstract : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Results : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Conclusions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Acknowledgements : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Author information : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Ethics declarations : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Rights and permissions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- About this article : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Table 1 One-way ANOVA and post hoc Tukey test results for mean ± SD of the %initial RTL, %postload RTL, and %difference between initial and postload RTL between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 2 One-way ANOVA and post hoc Tukey test results for mean ± SD of the initial RTV, postload RTV, and difference between initial and postload RTV between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 3 Comparison between short and high collar length (A and B) (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 4 The raw data in all six experimental groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Fig. 1. Different abutment angulations and collar lengths : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 2. a Stainless steel split cylindrical mold with implant fixture screwed to abutment. b Implant fixture unscrewed from abutment after polymerization. c Implant fixture centralized vertically and perpendicular to the base with platform flushed with resin block level : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 3. 3D scanning for abutment and designing for metal tube : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 4. Application of cyclic loading with universal testing machine : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 5. Mean rate ± SD of removal torque loss (%) between groups and results of ANOVA test for loss ratio of removal torque value between groups : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 6. Comparison between short and high collar length (A and B) : Effect of different angulations and collar lengths of conical hybrid implant