References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
Bickford JH, Nassar S. Handbook of bolts and bolted joints. New York: Marcel Dekker, Inc; 1998.
Dixon DL, Breeding LC, Sadler JP, McKay ML. Comparison of screw loosening, rotation, and deflection among three implant designs. J Prosthet Dent. 1995;74:270–8.
Hsu ML, Chung TF, Kao HC. Clinical applications of angled abutments - a literature review. Chin Dent J. 2005;24:15–21.
Morsch CS, Rafael CF, Dumes HF, Juanito GM, Bianchini MA. Failure of prosthetic screws on 971 implants. Braz J Oral Sci. 2015;14:195–8.
Ha CY, Lim YJ, Kim MJ, Choi JH. The influence of abutment angulation on screw loosening of implants in the anterior maxilla. Int J Oral Maxillofac Implants. 2011;26:45–55.
Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent. 1996;76:633–40.
Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J BiomedMater Res. 1998;43:192–203.
Squier RS, Psoter WJ, Taylor TD. Removal torques of conical, tapered implant abutments: the effects of anodization and reduction of surface area. Int J Oral Maxillofac Implants. 2002;17:24–7.
Norton MR. In vitro evaluation of the strength of the conical implant to abutment joint in two commercially available implant systems. J Preosthet Dent. 2000;83:567–71.
Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodontics Restorative Dent. 1993;13:408–31.
Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H. Performance of conical abutment (Morse taper) connection implants: a systematic review. J Biomed Mater Res A. 2014;102:552–74.
Serial posts:
- Abstract : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Results : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Conclusions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Acknowledgements : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Author information : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Ethics declarations : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Rights and permissions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- About this article : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Table 1 One-way ANOVA and post hoc Tukey test results for mean ± SD of the %initial RTL, %postload RTL, and %difference between initial and postload RTL between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 2 One-way ANOVA and post hoc Tukey test results for mean ± SD of the initial RTV, postload RTV, and difference between initial and postload RTV between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 3 Comparison between short and high collar length (A and B) (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 4 The raw data in all six experimental groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Fig. 1. Different abutment angulations and collar lengths : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 2. a Stainless steel split cylindrical mold with implant fixture screwed to abutment. b Implant fixture unscrewed from abutment after polymerization. c Implant fixture centralized vertically and perpendicular to the base with platform flushed with resin block level : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 3. 3D scanning for abutment and designing for metal tube : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 4. Application of cyclic loading with universal testing machine : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 5. Mean rate ± SD of removal torque loss (%) between groups and results of ANOVA test for loss ratio of removal torque value between groups : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 6. Comparison between short and high collar length (A and B) : Effect of different angulations and collar lengths of conical hybrid implant