Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
The increase in RTL with increasing abutment angulation can be attributed to the off-axis force as loading on angled abutments is mostly off-axis, which raises the concern of how angled abutments generally perform with such an unfavorable loading regimen [28]. Forces applied off-axis may be expected to overload the bone surrounding single-tooth implants, as shown by means of finite element analysis, which affects abutment screw leading to its loosening [31].
The greater the angulation, the greater the off-axis force that generates more stress and strain in implant components specially the screw [30] When off-axis loading is applied to an implant, the magnitude of the stress will be increased three times or more [28]. There was a statistically significant increase in stress and strain when abutment angulation increased. This supports the concept of eliminating unnecessary occlusal and off-axial forces on implant-supported restorations [4]. With clinical loading of implants restored using angled abutments, lateral occlusal forces may increase creating torsional force which increases screw loosening [12, 29]. Any direction of load that is not in the long axis of the implant will magnify the crestal stresses to the implant–bone interface and to the abutment screws in the restoration [8].
On the other hand, concerning the area of contact between screw thread and abutment, the increase of abutment angulation leads to decrease area of friction that leads to retention and thus screw loosening occurs. Comparing micromotion level between a straight abutment, a 15° to 25° abutment angulation, an increase in the micromotion level by 30% was observed. This micromotion may explain the screw failure. However, no screw failure occurred in a study with 2261 angled abutment evaluated for 96 months [29, 32].
According to the results of this study, it was showed that with straight abutments, %postload RTL was lower than %initial RTL. This result could be explained by Squier et al. [33] who stated that abutments of the conical hybrid connection showed detorque values higher than the initial torque due to the cold solder on the implant–abutment interface, which agrees with the results of this study. This condition arises from the friction between the two surfaces, which differ slightly; the pressure created by the insertion force determines the maintenance of the connection even after stopping the applied force for insertion.
Serial posts:
- Abstract : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Introduction : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Materials and methods : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Results : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Discussion : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [4]
- Conclusions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [1]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [2]
- References : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading [3]
- Acknowledgements : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Author information : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Ethics declarations : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Rights and permissions : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- About this article : Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading
- Table 1 One-way ANOVA and post hoc Tukey test results for mean ± SD of the %initial RTL, %postload RTL, and %difference between initial and postload RTL between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 2 One-way ANOVA and post hoc Tukey test results for mean ± SD of the initial RTV, postload RTV, and difference between initial and postload RTV between all groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 3 Comparison between short and high collar length (A and B) (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Table 4 The raw data in all six experimental groups (Of: Effect of different angulations and collar lengths of conical hybrid implant)
- Fig. 1. Different abutment angulations and collar lengths : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 2. a Stainless steel split cylindrical mold with implant fixture screwed to abutment. b Implant fixture unscrewed from abutment after polymerization. c Implant fixture centralized vertically and perpendicular to the base with platform flushed with resin block level : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 3. 3D scanning for abutment and designing for metal tube : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 4. Application of cyclic loading with universal testing machine : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 5. Mean rate ± SD of removal torque loss (%) between groups and results of ANOVA test for loss ratio of removal torque value between groups : Effect of different angulations and collar lengths of conical hybrid implant
- Fig. 6. Comparison between short and high collar length (A and B) : Effect of different angulations and collar lengths of conical hybrid implant