Background : Relation between the stability of dental implants (1)
Background
Dental implants have shown a high success rate for rehabilitation of edentulous patients if certain conditions are met during treatment. Nevertheless, the risk of failure remains difficult to predict. The achievement of osseointegration depends on many factors, such as a suitable host, biocompatible materials, careful surgery, and an appropriate healing time.
The primary stability comes from the mechanical anchorage between the bone tissue and the pitch region of the implant immediately after implantation. The secondary stability comes from the formation of new vital bone, which replaces the gap between the local bone and the implant surface and replaces the necrotic bone.
The external morphology of the dental implant is a factor which leads to the mechanical engagement of the implant with the bone. Three-thread-design dental implants consist of three different thread designs. The first design is the micro-thread, or supra-fine thread, which is on the coronal third of the implant fixture and is attached to the cortical bone. These small, fine threads are designed for force distribution, an increase in the bone-implant contact area and a decrease in the force concentration at the abutment-implant connection area. The second design is the reverse buttress thread, which is on the middle third of the implant fixture. This design increases the retention between the implant and spongy bone and produces resistance to compressive force. The third design, the condensed thread, is located at the apical third of the implant fixture. The thinness at the beginning of this thread and an increase in thickness along the implant fixture are designed for the soft spongy bone condensability.
Osseointegration, a continuous process, represents the coupling of the osteoclast and osteoblast activity for bone repair, formation, and adaptation to function. Implant-bone integration is separated into three phenomena. The first phenomenon is distance osteogenesis. Distance osteogenesis means that bone formation takes place from the local bone toward the implant surface. This event is anticipated to happen in cortical bone healing.
Serial posts:
- Relation between the stability of dental implants and two biological markers
- Background : Relation between the stability of dental implants (1)
- Background : Relation between the stability of dental implants (2)
- Methods : Relation between the stability of dental implants (1)
- Methods : Relation between the stability of dental implants (2)
- Methods : Relation between the stability of dental implants (3)
- Methods : Relation between the stability of dental implants (4)
- Results : Relation between the stability of dental implants
- Discussion : Relation between the stability of dental implants (1)
- Discussion : Relation between the stability of dental implants (2)
- Discussion : Relation between the stability of dental implants (3)
- Reference : Relation between the stability of dental implants
- Table 1 Inclusion and exclusion criteria
- Table 2 Profile of patients
- Table 3 ISQ values according to gender and bone quality
- Table 4 Crevicular fluid volume
- Table 5 Crevicular fluid ALP and OC levels
- Figure 1. Timeline of the clinical study
- Figure 2. Change in the mean ISQ values over time
- Figure 3. Change in the median values
- Figure 4. Change in the median values of the ALP level over time
- Figure 5. Change in the median values of the OC level over time
- Figure 6. There were weakly significant and positive correlations
- Figure 7. Comparison between biomarker levels & ISQ values
- Figure 8. There were moderately significant and positive correlations