Methods : Relation between the stability of dental implants (4)
The color in the wells changed from blue to yellow. After that, the color solution in each well was measured at 450/540 nm within 30 min. The OC level in each sample was calculated from a standard curve and normalized by total protein.
The level of the ALP activity was measured by colorimetric analysis. Briefly, 80 μl of sample solution were added into each well of a 96-well microplate, and then a mixture of 100 μl phosphate substrate solution (p-nitrophenyl phosphate) and 20 μl 1.5 M alkali buffer solution were added to each well. The microplate was incubated at 37 °C for 1 h. Next, 50 μl of stop solution (1 M NaOH) were added into each well. After that, the absorbance was measured at 620 nm. Known concentrations of ALP product (p-nitrophenol) were prepared with the dilutions ranging from 0 to 250 μM. The activity of ALP in the samples were calculated from a standard curve and normalized by total protein.
Data analysis
Data were analyzed by using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA). Repeated measures analysis of variance was performed to evaluate the change in the ISQ values at each measurement. The independent samples t test was used to investigate the differences in implant stability in the patients’ gender and bone quality. The Friedman test, followed by the Wilcoxon signed-rank test, was used to examine the differences in the crevicular fluid volume, the OC, or the ALP levels in each measurement. The Mann-Whitney U test was used to analyze the differences between the biomarker levels in the control and the test groups. The correlations between OC or ALP levels and ISQ values were calculated using the Pearson correlation coefficient. P values <0.05 were considered statistically significant.
Serial posts:
- Relation between the stability of dental implants and two biological markers
- Background : Relation between the stability of dental implants (1)
- Background : Relation between the stability of dental implants (2)
- Methods : Relation between the stability of dental implants (1)
- Methods : Relation between the stability of dental implants (2)
- Methods : Relation between the stability of dental implants (3)
- Methods : Relation between the stability of dental implants (4)
- Results : Relation between the stability of dental implants
- Discussion : Relation between the stability of dental implants (1)
- Discussion : Relation between the stability of dental implants (2)
- Discussion : Relation between the stability of dental implants (3)
- Reference : Relation between the stability of dental implants
- Table 1 Inclusion and exclusion criteria
- Table 2 Profile of patients
- Table 3 ISQ values according to gender and bone quality
- Table 4 Crevicular fluid volume
- Table 5 Crevicular fluid ALP and OC levels
- Figure 1. Timeline of the clinical study
- Figure 2. Change in the mean ISQ values over time
- Figure 3. Change in the median values
- Figure 4. Change in the median values of the ALP level over time
- Figure 5. Change in the median values of the OC level over time
- Figure 6. There were weakly significant and positive correlations
- Figure 7. Comparison between biomarker levels & ISQ values
- Figure 8. There were moderately significant and positive correlations